Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy+x-y-1=4-1
x.(y+1)-(y+1)=3
(y+1).(x+1)=3
suy ra x+1 thuộc ước của 3 = +-1, +-3
rồi kẻ bảng xét ok
\(x\left(y+1\right)-\left(y+1\right)+1=4\)
\(\left(y+1\right)\left(x-1\right)=3=1.3=3.1\)
Th1
y+1=1
x-1=3
Suy ra y=0(loại vì ko dương)
x=4
y+1=3
x-1=1
suy ra y=2;x=2(chọn)
Vậy.......
xy+x-y=4
=>(xy+x)-(y+1)=3
=>(y+1)(x-1)=3
Mà x;y nguyên nên (x-1);(y+1) thuộc Ư(3)={1;-1;3;-3}
Đến đây bạn lập bảng là ra
xy+x-y=4
=>(xy+x)-(y+1)=3
=>(y+1)(x-1)=3
Mà x;y nguyên nên (x-1);(y+1) thuộc Ư(3)={1;-1;3;-3}
Đến đây bạn lập bảng là ra
Bài làm:
Dễ thấy a,b,c khác 0
Ta có: \(\frac{xy}{x+y}=\frac{12}{7}\Leftrightarrow\frac{x+y}{xy}=\frac{7}{12}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{7}{12}\) (1)
Tương tự ta tách ra được: \(\frac{1}{y}+\frac{1}{z}=-\frac{1}{6}\) (2) ; \(\frac{1}{z}+\frac{1}{x}=-\frac{1}{4}\) (3)
Cộng vế (1);(2) và (3) lại ta được:
\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{6}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{12}\) (4)
Cộng vế (1) và (2) lại ta được: \(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}=\frac{5}{12}\)
Thay (4) vào ta được: \(\frac{1}{y}+\frac{1}{12}=\frac{5}{12}\Leftrightarrow\frac{1}{y}=\frac{1}{3}\Rightarrow y=3\)
Từ đó ta dễ dàng tính được: \(\hept{\begin{cases}\frac{1}{x}=\frac{7}{12}-\frac{1}{3}=\frac{1}{4}\\\frac{1}{z}=-\frac{1}{6}-\frac{1}{3}=-\frac{1}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\z=-2\end{cases}}\)
Vậy \(\left(x;y;z\right)=\left(4;3;-2\right)\)
\(\Leftrightarrow\left(x^2-1\right)-\left(xy+y\right)=3\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)-y\left(x+1\right)=3\)
\(\Leftrightarrow\left(x+1\right)\left(x-y-1\right)=3\)
Ta có bảng sau:
x+1 | -3 | -1 | 1 | 3 |
x-y-1 | -1 | -3 | 3 | 1 |
x | -4 | -2 | 0 | 2 |
y | -4 | 0 | -4 | 0 |
Vậy \(\left(x;y\right)=\left(-4;-4\right);\left(-2;0\right);\left(0;-4\right);\left(2;0\right)\)
x=2
y=2
sai đề rồi