Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{2x^2+y^2-2xy}{xy}=\frac{\left(x^2-4xy+4y^2\right)+x^2+2xy-3y^2}{xy}=\frac{\left(x-2y\right)^2+x^2+2xy-3y^2}{xy}\)
\(=\frac{\left(x-2y\right)^2}{xy}+\frac{x}{y}+2+\frac{-3y}{x}\ge0+2+2+\frac{-3}{2}=\frac{5}{2}\)
Vậy minA = \(\frac{5}{2}\)khi x = 2y.
\(PT\Leftrightarrow\left[\left(x^2+y^2+2xy\right)-2x-2y+1\right]+\left(2x^2-12y+18\right)=0\)
\(\Leftrightarrow\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+2\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)^2+2\left(x-3\right)^2=0\)
\(A=\sqrt{x^4+4x^3+6x^2+4x+2}+\sqrt{y^4-8y^3+24y^2-32y+17}\)
\(=\sqrt{\left(x+1\right)^4+1}+\sqrt{\left(y-2\right)^4+1}\)
Đặt \(\hept{\begin{cases}x+1=u\\y-2=v\end{cases}}\Rightarrow A=\sqrt{u^4+1}+\sqrt{v^4+1}\)(với \(u,v\inℝ\))
Điều kiện đã cho ban đầu trở thành \(\left(u+1\right)\left(v+1\right)=\frac{9}{4}\)
\(\Leftrightarrow uv+u+v+1=\frac{9}{4}\Leftrightarrow uv+u+v=\frac{5}{4}\)
Ta có: \(\hept{\begin{cases}\left(2u-1\right)^2\ge0\forall u\inℝ\\\left(2v-1\right)^2\ge0\forall v\inℝ\end{cases}}\Leftrightarrow\hept{\begin{cases}4u^2-4u+1\ge0\\4v^2-4v+1\ge0\end{cases}}\forall u,v\inℝ\)
\(\Rightarrow\hept{\begin{cases}4u^2+1\ge4u\\4v^2+1\ge4v\end{cases}}\Rightarrow u^2+v^2\ge u+v-\frac{1}{2}\forall u,v\inℝ\)(*)
và \(\left(u-v\right)^2\ge0\forall u,v\inℝ\Leftrightarrow u^2-2uv+v^2\ge0\forall u,v\inℝ\)
\(\Rightarrow u^2+v^2\ge2uv\forall u,v\inℝ\Leftrightarrow\frac{1}{2}\left(u^2+v^2\right)\ge uv\forall u,v\inℝ\)(**)
Cộng theo vế của (*) và (**), ta được: \(\frac{3}{2}\left(u^2+v^2\right)\ge uv+u+v-\frac{1}{2}=\frac{5}{4}-\frac{1}{2}=\frac{3}{4}\)
\(\Rightarrow u^2+v^2\ge\frac{1}{2}\)(**
Áp dụng bất đẳng thức Minkowski, ta được:
\(A=\sqrt{u^4+1}+\sqrt{v^4+1}\ge\sqrt{\left(u^2+v^2\right)^2+\left(1+1\right)^2}\)
\(=\sqrt{\left(u^2+v^2\right)^2+4}\ge\sqrt{\left(\frac{1}{2}\right)^2+4}=\sqrt{\frac{1}{4}+4}=\frac{\sqrt{17}}{2}\)
Đẳng thức xảy ra khi \(u=v=\frac{1}{2}\Leftrightarrow x=-\frac{1}{2};y=\frac{5}{2}\)
Vậy GTNN của A là \(\frac{\sqrt{17}}{2}\)đạt được khi \(x=-\frac{1}{2};y=\frac{5}{2}\)
Đặt \(a=2+x;b=y-1\) thì \(ab=\frac{9}{4}\)
Thì \(\sqrt{x^4+4x^3+6x^2+4x+2}=\sqrt{a^4-4a^3+6a^2-4a+2}\)
và \(\sqrt{y^4-8y^3+24y^2-32y+17}=\sqrt{b^4-4b^3+6b^2-4b+2}\) (cái này dùng phương pháp đồng nhất hệ số là xong)
Vậy ta tìm Min \(A=\sqrt{a^4-4a^3+6a^2-4a+2}+\sqrt{b^4-4b^3+6b^2-4b+2}\)
\(=\sqrt{\left(a^4-4a^3+4a^2\right)+2\left(a^2-2a+1\right)}+\sqrt{\left(b^4-4b^3+4b^2\right)+2\left(b^2-2b+1\right)}\)
\(=\sqrt{\left(a^2-2a\right)^2+\left[\sqrt{2}\left(a-1\right)\right]^2}+\sqrt{\left(b^2-2b\right)^2+\left[\sqrt{2}\left(b-1\right)\right]^2}\)
\(\ge\sqrt{\left(a^2+b^2-2a-2b\right)^2+2\left(a+b-2\right)^2}\)
\(\ge\sqrt{\left[\frac{\left(a+b\right)^2}{2}-2\left(a+b\right)\right]^2+2\left(a+b-2\right)^2}\)
\(=\sqrt{\left(\frac{t^2}{2}-2t\right)^2+2\left(t-2\right)^2}\left(t=a+b\ge2\sqrt{ab}=3\right)\)
\(=\sqrt{\frac{1}{4}\left(t-1\right)\left(t-3\right)\left(t^2-4t+5\right)+\frac{17}{4}}\ge\frac{\sqrt{17}}{2}\)
Trình bày hơi lủng củng, sr.
từ pt thứ nhất ta có x + y = 2xy.
đặt xy = t.
pt thứ 2: 2t - t2 = \(\sqrt{\left(t-1\right)^2+1}\) hay \(1-\left(t-1\right)^2=\sqrt{\left(t-1\right)^2+1}\)
đặt a = (t - 1)2.
pt: 1 - a = \(\sqrt{a+1}\) hay a2 -2a + 1 = a + 1 (đk: a \(\le\) 1).
hay a2 - 3a = 0 hay a = 3 (loại) hoặc a = 0.
với a = 0 thì t = 1 hay xy = 1 và x + y = 2.
x, y là nghiệm pt: z2 - 2z + 1 = 0 hay z = 1 hay x= y = 1.
Quan trọng là dự đoán:D
Dự đoán Max =70 khi (x;y) =(-8;0)
Ta có: \(70-P=\frac{6\left(x+y+8\right)^2+17y^2}{11}\ge0\)
Hoặc một phân tích khác:\(70-P=\frac{\left(6x+23y+48\right)^2+102\left(x+8\right)^2}{253}\ge0\)
Từ giả thiết chuyển vế liên hợp suy ra x=y
Thế xuống dưới là đc thôi
Áp dụng nè : \(\frac{2}{x^2+y^2}+\frac{2}{2xy}\ge\frac{8}{\left(x+y\right)^2}\ge\frac{1}{2}\)
Có lẽ x,y nguyên:v
\(x^2+2xy=24y^2+20\)
\(\Leftrightarrow\left(x+y\right)^2=25y^2+20\)
\(\Leftrightarrow\left(x+y\right)^2-25y^2=20\)
\(\Leftrightarrow\left(x-4y\right)\left(x+6y\right)=20\)
Đến đây bạn làm nốt