Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.
Giả sử số lẻ đó là x thì ta có
\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)
\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)
\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)
Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm
b/ \(9x^2+2=y^2+y\)
\(\Leftrightarrow36x^2+8=4y^2+4y\)
\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)
\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)
1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)
Biêt x, y , z thoả mãn: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và x - 2y + 3z = 10. Tìm x,y,z.
a, cộng vế vs vế của 3 biểu thức ta có :
\(2\left(x+y+z\right)=-\frac{7}{6}+\frac{1}{4}+\frac{1}{2}\)
\(2\left(x+y+z\right)=-\frac{5}{12}\)
\(x+y+z=-\frac{5}{24}\)
\(\begin{cases}z=\frac{23}{24}\\x=-\frac{11}{24}\\y=-\frac{17}{24}\end{cases}\)
| x - 1| + | x - 2| + | y - 3| + | x - 4|
= 179/28 + 151/28 + 3 + 95/28
= 509/28
là sao???