K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{2+3}{x}hay2+\dfrac{3}{x}\)  vậy

2 tháng 5 2021

cái 2+\(\dfrac{3}{x}\)

24 tháng 2 2022

Ta có: (2x+3y)2<(2x+3y)2+5x+5y+1<(2x+3y+2)2(2x+3y)2<(2x+3y)2+5x+5y+1<(2x+3y+2)2.

Do đó để (2x+3y)2+5x+5y+1(2x+3y)2+5x+5y+1 là số chính phương thì (2x+3y)2+5x+5y+1=(2x+3y+1)2⇔x=y(2x+3y)2+5x+5y+1=(2x+3y+1)2⇔x=y.

Vậy x = y
-game là dễ banh

24 tháng 2 2022

Ta có: (2x+3y)2<(2x+3y)2+5x+5y+1<(2x+3y+2)2(2x+3y)2<(2x+3y)2+5x+5y+1<(2x+3y+2)2.

Do đó để (2x+3y)2+5x+5y+1(2x+3y)2+5x+5y+1 là số chính phương thì (2x+3y)2+5x+5y+1=(2x+3y+1)2⇔x=y(2x+3y)2+5x+5y+1=(2x+3y+1)2⇔x=y.

Vậy x = y

AH
Akai Haruma
Giáo viên
5 tháng 2

Lời giải:

Gọi $d=ƯCLN(n+1, 4n^2-2n-5)$

$\Rightarrow n+1\vdots d; 4n^2-2n-5\vdots d$

$\Rightarrow 4(n+1)^2-(4n^2-2n-5)\vdots d$
$\Rightarrow 10n+9\vdots d$

$\Rightarrow 10(n+1)-1\vdots d$

Mà $n+1\vdots d$ nên $1\vdots d\Rightarrow d=1$

Vậy $n+1, 4n^2-2n-5$ nguyên tố cùng nhau. Để $(n+1)(4n^2-2n-5)$ là scp thì bản thân mỗi số $n+1, 4n^2-2n-5$ là scp.

Đặt $n+1=a^2; 4n^2-2n-5=b^2$

$\Rightarrow 4(a^2-1)^2-2(a^2-1)-5=b^2$

$\Leftrightarrow 4a^4-8a^2+4-2a^2+2-5=b^2$

$\Leftrightarrow 4a^4-10a^2+1=b^2$

$\Leftrightarrow 16a^4-40a^2+4=4b^2$
$\Leftrightarrow (4a^2-5)^2-21=4b^2$

$\Leftrightarrow 21=(4a^2-5)^2-(2b)^2=(4a^2-5-2b)(4a^2-5+2b)$

Đến đây là dạng phương trình tích cơ bản, chỉ cần xét các TH để tìm ra $a,b$

10 tháng 3 2017

Ta có: \(\left(x-y\right)^3+\left(y-z\right)^2+2015|x-z|=2017\)

Đặt \(\hept{\begin{cases}x-y=a\\y-z=b\end{cases}\left(a,b\in Z\right)}\) thì ta có

\(a^3+b^2+2015|a+b|=2017\)

+ Nếu a lẻ b lẻ thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a lẻ b chẵn thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a chẵn b lẻ thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a chẵn b chẵn thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

Vậy không tồn tại a, b nguyên thỏa đề bài hay là không tồn tại x, y, z nguyên dương thỏa đề bài.

mình chưa học

a)Giả sử tồn tại số nguyên n sao cho \(n^2+2002\)là số chình phương.

\(\Rightarrow n^2+2002=a^2\left(a\inℕ^∗\right)\)

\(\Rightarrow a^2-n^2=2002\)

\(\Rightarrow a^2+an-an-n^2=2002\)

\(\Rightarrow a\left(a+n\right)-n\left(a+n\right)=2002\)

\(\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)

Mà \(2002⋮2\)\(\Rightarrow\orbr{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}\left(1\right)}\)

Ta có : \(\left(a+n\right)-\left(a-n\right)=-2n\)

\(\Rightarrow\)\(a-n\)và \(a+n\)có cùng tính chẵn lẻ \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}}\)

Vì 2 là số nguyên tố \(\Rightarrow\left(a-n\right)\left(a+n\right)⋮4\)

mà 2002 không chia hết cho 4

\(\Rightarrow\)Mâu thuẫn

\(\Rightarrow\)Điều giả sử là sai

\(\Rightarrow\)Không tồn tại số nguyên n thỏa mãn đề bài