Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5\left(x-2019\right)^2\ge0\Rightarrow14-y^2\le0\Rightarrow y^2\le14\Rightarrow y^2=\left\{0;1;4;9\right\}\left(y\in N\right)\)
Mặt khác, \(5\left(x-2019\right)^2⋮5\Rightarrow14-y^2⋮5\)
Do đó: \(y^2=4\)
Ta có: \(5\left(x-2019\right)^2=14-2^2\Rightarrow\left(x-2019\right)^2=2\)
Mà không số tự nhiên nào bình phương bằng 2 nên \(x\in\varnothing\)
Vậy ko có giá trị nào của x,y là số tự nhiên thỏa mãn đề bài.
Nếu theo như mình đoán thì đáp án như sau:
x=2,y=3,z=6
và có thể tráo đổi vị trí của đáp án đó lại với nhau cũng được
cố lên nhé
ta có: vế trái 9x2+5 ko chia hết cho 3
=> y(y+1) không chia hết cho 3 => y và y +1 ko chia hết cho 3
Mà y, y+1 là 2 số tự nhiên liên tiếp nên y=3k + 1, y+1 = 3k+2 (k\(\in\)N)
Phương trình trở thành:
\(9x^2+5=\left(3k+1\right)\left(3k+2\right)\Leftrightarrow9x^2+5=9k^2+9k+2\Leftrightarrow\)\(3x^2+1=3k^2+3k\) (2)
Ta có vế phải của (2) chia hết cho 3 nhưng vế trái thì ko (vô lý)
=>ko tồn tại đẳng thức
=> ko tồn tại x, y thỏa 9x^2 +5 = y(y+1)
Vậy...