\(\in\)N  thỏa:  9x2+5=y(y+1)

       

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2018

\(5\left(x-2019\right)^2\ge0\Rightarrow14-y^2\le0\Rightarrow y^2\le14\Rightarrow y^2=\left\{0;1;4;9\right\}\left(y\in N\right)\)

Mặt khác, \(5\left(x-2019\right)^2⋮5\Rightarrow14-y^2⋮5\)

Do đó: \(y^2=4\)

Ta có: \(5\left(x-2019\right)^2=14-2^2\Rightarrow\left(x-2019\right)^2=2\) 

Mà không số tự nhiên nào bình phương bằng 2 nên \(x\in\varnothing\)

Vậy ko có giá trị nào của x,y là số tự nhiên thỏa mãn đề bài.

14 tháng 4 2019

A=\(x^3.\left(\frac{-5}{4}x^2y\right)\)=\(x^5\).\(\left(\frac{-5}{4}\right)y\)

-Bậc là: 6

-Hệ số:\(\frac{-5}{4}\)

B=\(\left(\frac{-3}{4}x^5y^4\right).\left(xy^2\right).\left(\frac{-8}{9}\right)\)\(x^2y^5\)

=\(\frac{2}{3}.x^8.y^{11}\)

-Bậc là: 19

-Hệ số:\(\frac{2}{3}\)

C=\(\frac{1}{6}x\left(2y^3\right)^2.\left(-9x^5y\right)\)

=\(\frac{1}{6}x\left(4.y^6\right).\left(-9x^5y\right)\)

=-6.\(x^6\).\(y^7\)

-Bậc là: 13

-Hệ số: -6

16 tháng 7 2016

ta có: vế trái 9x2+5 ko chia hết cho 3

=> y(y+1) không chia hết cho 3 => y và y +1 ko chia hết cho 3

Mà y, y+1 là 2 số tự nhiên liên tiếp nên y=3k + 1, y+1 = 3k+2  (k\(\in\)N)

Phương trình trở thành: 

\(9x^2+5=\left(3k+1\right)\left(3k+2\right)\Leftrightarrow9x^2+5=9k^2+9k+2\Leftrightarrow\)\(3x^2+1=3k^2+3k\) (2)

Ta có vế phải của (2) chia hết cho 3 nhưng vế trái thì ko (vô lý)

=>ko tồn tại đẳng thức

=> ko tồn tại x, y thỏa 9x^2 +5 = y(y+1)

Vậy...

22 tháng 12 2015

sao bạn Nguyễn Khắc Vinh trả lời toàn sai mà vẫn được li-ke nhỉ ???

20 tháng 4 2018

a)\(x^2-2x+y^2+4y+5=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\left(tm\right)\)