\(^2\)+ y\(^2\)/10 =x
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

\(\dfrac{x^2+y^2}{10}=\dfrac{x^2-2y^2}{7}\)

\(\Leftrightarrow7x^2+7y^2=10x^2-20y^2\)

\(\Leftrightarrow-3x^2=-27y^2\)

\(\Leftrightarrow x^2=9y^2\)

Theo đề, ta có: \(\left(x^2y^2\right)^2=81\)

\(\Leftrightarrow81y^8=81\)

=>y=1 hoặc y=-1

hay x=3 hoặc x=-3

6 tháng 4 2020

\(\frac{x^2+y^2}{10}=\frac{x^2+2y}{7}\)

\(\Leftrightarrow7\left(x^2+y^2\right)=10\left(x^2-2y^2\right)\)

\(\Leftrightarrow-3x^2+27y^2=0\)

\(\Leftrightarrow-x^2+9y^2=0\)

\(\Leftrightarrow x^2=9y^2\)

\(x^4.y^4=81\Leftrightarrow x^2.y^2=9\Leftrightarrow9y^2.y^2=9\Leftrightarrow y^4=1\)

\(\Rightarrow y=\pm1=>x=\pm1\)

Vậy \(\left(x;y\right)=\left(1,1\right);\left(1;-1\right);\left(-1;-1\right);\left(-1;1\right)\)

31 tháng 5 2017

Đặt \(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}=k\)

\(\Rightarrow\hept{\begin{cases}x^2+y^2=10k\left(1\right)\\x^2-2y^2=7k\left(2\right)\end{cases}}\)

Từ 2 ta có :

x2 = 7k + 2y2 

Thay ngược vào (1) , ta lại có :

7k + 2y2 + y2 = 10k

=> y2 = k

<=> x2 = 9k

Thay x2 , y2 vào biểu thức x4.y4 = 81

=> 81k2 . k2 = 81

=> k4 = 1

=> k = 1 hoặc = -1

Với k = 1 thì x = 3 hoặc -3 

               và y = 1 hoặc -1

Với k = -1 thì x,y không có giá trị thõa mãn 

15 tháng 7 2017
 

Đặt x2+y210 =x22y27 =k

{

x2+y2=10k(1)
x22y2=7k(2)

Từ 2 ta có :

x2 = 7k + 2y2 

Thay ngược vào (1) , ta lại có :

7k + 2y2 + y2 = 10k

=> y2 = k

<=> x2 = 9k

Thay x2 , y2 vào biểu thức x4.y4 = 81

=> 81k2 . k2 = 81

=> k4 = 1

=> k = 1 hoặc = -1

Với k = 1 thì x = 3 hoặc -3 

               và y = 1 hoặc -1

Với k = -1 thì x,y không có giá trị thõa mãn 

nha các bạn
 
9 tháng 12 2016

a, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{5x}{15}=\frac{2y}{8}=\frac{5x-2y}{15-8}=\frac{28}{7}=4\)

=> x = 4.3 = 12

y = 4.4 = 16

b, \(x:2=y:\left(-5\right)\Rightarrow\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)

=> x = (-1).2 = -2

y = (-1)(-5) = 5

c, \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-10}=\frac{10}{10}=1\)

=> x = 8

y =12

z = 15

22 tháng 7 2019

Câu 1: ĐẶt \(\frac{x}{5}=\frac{y}{4}=k\)\(\Rightarrow x=5k;......y=4k\)

Ta có: \(x^2y=\left(5k\right)^2.\left(4k\right)=400k^3=100\)

\(\Rightarrow k^3=\frac{1}{4}\Rightarrow k=\sqrt[3]{\frac{1}{4}}\)

Vậy \(x=5k=4\sqrt[3]{\frac{1}{4}}\)

\(y=4.\sqrt[3]{\frac{1}{4}}\)

Câu 3 4 5 tương tư:

câu 2. bạn biến đổi: \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)thì sẽ trở thành dạng quen thuộc ở trên. :))

22 tháng 7 2019

Bạn ơi mình chưa học cách bạn làm

2 tháng 3 2017

a)\(\frac{4+x}{7+y}=\frac{4}{7}\Leftrightarrow7\left(4+x\right)=4\left(7+y\right)\Leftrightarrow28+7x=28+4y\Leftrightarrow7x=4y\Leftrightarrow\frac{x}{4}=\frac{y}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{55}{11}=5\)

=> x=5.4=20; y=5.7=35

b) \(x=\frac{z}{2}\Rightarrow\frac{x}{10}=\frac{z}{20}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{20}=\frac{2y}{30}=\frac{3z}{60}\)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{20}=\frac{2y}{30}=\frac{3z}{60}=\frac{x+2y-3z}{10+30-60}=\frac{-24}{-20}=\frac{6}{5}\)

=> \(x=\frac{6}{5}.10=12;y=\frac{6}{5}.15=30;z=\frac{6}{5}.20=24\)