K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
23 tháng 8 2021

Vì \(x^2;y^2\) chia 4 dư 1 hoặc 0 

mà 100 chia hết cho 4 nên : \(\hept{\begin{cases}x^2\equiv0mod4\\y^2\equiv0mod4\end{cases}\Rightarrow\hept{\begin{cases}x=2h\\y=2k\end{cases}}\Rightarrow h^2+k^2=25}\)

nên ta có : \(1\le k\le5\) thử các trường hợp ta có : \(\orbr{\begin{cases}k=3,h=4\\k=4,h=3\end{cases}}\) vậy có hai cặp số thỏa mãn là 

\(\orbr{\begin{cases}\left(6,8\right)\\\left(8,6\right)\end{cases}}\)

LM
Lê Minh Vũ
CTVHS VIP
15 tháng 11 2021

\(\left(x\div y\right)^2=\frac{x^2}{y^2}=\frac{16}{9}\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{x^2+y^2}{16+9}=\frac{100}{25}=4\)

Do đó:
\(\frac{x^2}{16}=4\Rightarrow x^2=16.4\Rightarrow x^2=64\Rightarrow x^2=8^2\Rightarrow x=\pm8\)\(\frac{y^2}{9}=4\Rightarrow y^2=9.4\Rightarrow y^2=36\Rightarrow y^2=6^2\Rightarrow y=\pm6\)               

Vậy \(x=\left(8;-8\right);y=\left(6;-6\right)\)

LM
Lê Minh Vũ
CTVHS VIP
15 tháng 11 2021

Hoặc có thể làm.

\(\left(x\div y\right)^2=\frac{16}{9}\)

\(\Rightarrow\)\(x^2\div y^2=\frac{16}{9}\)

\(\Rightarrow\)\(x^2=\frac{16}{9}.y^2\)

\(\Rightarrow\)\(\frac{16}{9}.y^2+y^2=100\)

\(\Rightarrow\)\(y^2.\left(\frac{16}{9}+1\right)=100\)

\(\Rightarrow\)\(\frac{25}{9}.y^2=100\)

\(\Rightarrow\)\(y^2=100\div\frac{25}{9}\)

\(\Rightarrow\)\(y^2=36\)

\(\Rightarrow\)\(y=6;y=-6\)

\(\Leftrightarrow\)\(x^2+36=100\)

\(\Rightarrow\)\(x^2=100-36\)

\(\Rightarrow\)\(x^2=64\)

\(\Rightarrow\)\(x=8;x=-8\)

Vậy \(x=\left(8;-8\right);y=\left(6;-6\right)\)

23 tháng 10 2021

Ta có :

\(\left(\frac{x}{y}\right)^2=\frac{16}{9}\)\(\Rightarrow\frac{x^2}{y^2}=\frac{16}{9}\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{x^2}{4^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{16+9}=\frac{100}{25}=4=\left(\pm2\right)^2\)

\(\Rightarrow\hept{\begin{cases}x^2=\left(±2\right)^2.4^2\\y^2=\left(\pm2\right)^2.3^2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2=\left(\pm2.4\right)^2\\y^2=\left(\pm2.3\right)^2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2=\left(\pm8\right)^2\\y^2=\left(\pm6\right)^2\end{cases}}\Rightarrow\hept{\begin{cases}x=\pm8\\y=\pm6\end{cases}}\)

Mà x và y cùng dấu => ( x , y ) ∈ { ( -8 ; -6 ) ; ( 8 ; 6 ) }

16 tháng 9 2018

Ta có \(\left(\frac{x}{y}\right)^2=\frac{16}{9}=\left(\pm\frac{4}{3}\right)^2\)

\(\frac{x}{y}\)dương nên \(\frac{x}{y}=\frac{4}{3}\Rightarrow x=\frac{4y}{3}\)

Thay \(x=\frac{4y}{3}\)vào \(x^2+y^2=100\)ta được

\(\left(\frac{4y}{3}\right)^2+y^2=100\)

\(\frac{16}{9}.y^2+y^2=100\)

\(y^2.\left(\frac{16}{9}+1\right)=100\)

\(y^2.\frac{25}{9}=100\)

\(y^2=100:\frac{25}{9}=36\)

\(y=6\)( vì y dương  )

14 tháng 11 2021

\(\left(\dfrac{x}{y}\right)^2:x^2+y^2=100\)

\(\dfrac{x^2}{y^2}:x^2+y^2=100\)

\(\dfrac{x^2}{x^2.y^2}+y^2=100\)

\(y^2+y^2=100\)

\(2y^2=100\)

\(y^2=50\)

⇒ \(\left[{}\begin{matrix}y=\sqrt{50}\\y=-\sqrt{50}\end{matrix}\right.\)

Còn lại bạn thay từng tường hợp vào tìm x là được

14 tháng 11 2021

thk bạn