\(Tìm x ,y biết x/7=y/3 và x-24=y\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2017

ta có \(x-24=y\Rightarrow x-y=24\)

MÀ \(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\) (ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU)

\(\Rightarrow\frac{x}{7}=6\Rightarrow x=42\Rightarrow y=42-24=18\)

23 tháng 10 2019

a.

\(\frac{2x}{7}=\frac{3y}{2}\Rightarrow4x=21y\)

\(x-y=17\Rightarrow x=17+y\)

\(\Rightarrow4\left(17+y\right)=21y\Rightarrow68+4y=21y\Rightarrow17y=68\Rightarrow y=4\)

\(\Rightarrow x=17+y=17+4=21\)

23 tháng 10 2019

b.

\(\frac{x}{2}=\frac{y}{5}\Rightarrow5x=2y\)

\(x\cdot y=40\Rightarrow x=\frac{40}{y}\)

\(\Rightarrow5\cdot\frac{40}{y}=2y\Rightarrow\frac{200}{y}=2y\Rightarrow2y^2=200\Rightarrow y=\pm10\)

\(\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

3 tháng 12 2017

đề bài sao zậy bn

3 tháng 12 2017
Đề đúng rồi ý đề cô mk cho y như vậy mà

x/3=y/2 suy ra 2x=3y => 2x -3y =0

ta có hệ phương trình :

2x-3y =30                  (1)

2x^2+3y^2 =30          (2)

từ (1) => x=30+3y/2 thay vào (2) sẽ tìm được y nha

Được y xong rồi thay vào (1) là tìm được x 

đang vội nên chỉ hướng dẫn vậy thôi nhá !

10 tháng 10 2020

Đặt \(\frac{x}{3}=\frac{y}{2}=k\Rightarrow\hept{\begin{cases}x=3k\\y=2k\end{cases}}\)

2x2 + 3y2 = 30

<=> 2.(3k)2 + 3.(2k)2 = 30

<=> 2.9k2 + 3.4k2 = 30

<=> 18k2 + 12k2 = 30

<=> 30k2 = 30

<=> k2 = 1

<=> k = ±1

Với k = 1 => x = 3 ; y = 2

Với k = -1 => x = -3 ; y = -2

7 tháng 6 2016

Đề kiểu j vậy???

Ta có x/5=y/7 và x+y=24

Áp dụng tính chất dãy tỉ số bằng nhau ta có

x/5=y/7=(x+y)/(5+7)=24/12=2

x/5=2=>x=10

y/7=2=>y=14

15 tháng 12 2016

a) Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2005}=\frac{3-y}{2006}=\frac{x-1+3-y}{2005+2006}=\frac{2+x-y}{4011}=\frac{2+4009}{4011}=1\)

=> \(\begin{cases}x-1=2005\\3-y=2006\end{cases}\)\(\Leftrightarrow\begin{cases}x=2006\\y=-2003\end{cases}\)

b) Có: \(3x=y\Rightarrow\frac{x}{1}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{12}\)

\(5y=4z\Rightarrow\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

=> \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tc của dãy tỉ số bằng nahu ta có:

\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{6x+7y+8z}{6\cdot4+7\cdot12+8\cdot15}=\frac{456}{228}=2\)

=> \(\begin{cases}x=8\\y=24\\z=30\end{cases}\)

c) Có: \(x-24=y\Rightarrow x-y=24\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\)

=> \(\begin{cases}x=42\\y=18\end{cases}\)