Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x=2z;y=3z
=> B=(5x2z+3x3z)/(6x2z-7x3z)
=(19z)/(-9z)
=-19/9
Ta có : \(\frac{x}{3}=\frac{y}{8};x+y=-22\)
Áp dụng tính cất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{3}=\frac{y}{8}=\frac{x+y}{3+8}=\frac{-22}{11}=-2\)
\(\Rightarrow\frac{x}{3}=-2\Rightarrow x=-6\)
\(\Rightarrow\frac{y}{8}=-2\Rightarrow y=-16\)
Vậy x = -6 và y = -16
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{8}=\frac{x+y}{3+8}=-\frac{22}{11}=-2\)
Ta có :
\(\frac{x}{3}=-2\Rightarrow x=-6\)
\(\frac{y}{8}=-2\Rightarrow y=-16\)
Vậy x = -6 ; y = -16
Bài 1:
a)\(\frac{x}{5}=\frac{-12}{20}\Rightarrow20x=5.\left(-12\right)=-60\Rightarrow x=-3\)
b)\(\frac{2}{y}=\frac{11}{-66}\Rightarrow2.\left(-66\right)=11y\Rightarrow11y=-132\Rightarrow y=-12\)
c)\(\frac{-3}{6}=\frac{x}{-2}=\frac{-18}{y}=\frac{-z}{24}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{-3}{6}=\frac{x}{-2}\Rightarrow x=\frac{\left(-3\right)\left(-2\right)}{6}=1\\\frac{-3}{6}=\frac{-18}{y}\Rightarrow y=\frac{\left(-18\right).6}{-3}=36\\\frac{-3}{6}=\frac{-z}{24}\Rightarrow-z=\frac{\left(-3\right).24}{6}=-12\Rightarrow z=12\end{matrix}\right.\)
Bài 2:
\(\frac{-2}{x}=\frac{y}{3}\Rightarrow xy=\left(-2\right).3=-6\)
Mà \(x< 0< y\) nên ta có bảng sau:
\(x\) | \(-6\) | \(-3\) | \(-2\) | \(-1\) |
\(y\) | 1 | 2 | 3 | 6 |
a,x/2=y/5
<=> 2x/4=y/5=2x+y/4+5=18/9=2
+,x/2=2 => x=4
+, y/5=2 => y=10
g, x/2=y/5
đặt x/2=y/5=k
=> x=2k ; y=5k
ta có 2k.5k=90
k2.10=90
k2=9
=> k=3 k=-3
+, x/2=2=> x=4 x/2=-2 => x=-4
+, y/5=2 => y=10 y/5=-2 => y=-10
CÁC Ý SAU BN LÀM NỐT NHÉ DỄ MÀ
a) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{2x+y}{4+5}=\frac{18}{9}=2\)
\(\Rightarrow x=4;y=10\)
mấy bài còn lại tương tự
1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy GTNN của A = -8 khi x=0, y=2.
b) Ta có: \(B=|x-3|+|x-7|\)
\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)
Vậy GTNN của B = 4 khi \(3\le x\le7\)
2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)
\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)
b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)
Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:
\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)
Bài 3: đề không rõ.
Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)
Có \(x^4\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow A\ge0+0-8=-8\)
Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)
\(b,B=\left|x-3\right|+\left|x-7\right|\)
\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)
\(\Rightarrow B\ge\left|x-3+7-x\right|\)
\(\Rightarrow B\ge\left|-10\right|=10\)
Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)
Ta có : \(\frac{x}{y}=\frac{2}{3}\Rightarrow x=\frac{2}{3}y\)
Thay \(x=\frac{2}{3}y\)vào A , ta được :
\(A=\frac{5.\frac{2}{3}y+3y}{6.\frac{2}{3}y-7y}\)
\(\Rightarrow A=\frac{\frac{10}{3}y+3y}{4y-7y}\)
\(\Rightarrow A=\frac{\left(\frac{10}{3}+3\right)y}{-3y}\)
\(\Rightarrow A=\frac{\frac{19}{3}y}{-3y}\)
\(\Rightarrow A=\frac{\frac{19}{3}}{-3}\)
\(\Rightarrow A=\frac{19}{3}.-\frac{1}{3}\)
\(\Rightarrow A=-\frac{19}{9}\)
Vậy \(A=-\frac{19}{9}\)
\(b,8x=7y;y-x=11\)
⇔\(\frac{y}{8}=\frac{x}{7}=\frac{y-x}{8-7}=11\)
⇔\(\frac{y}{8}=11=>y=88\).
⇔\(\frac{x}{7}=11=>x=77\).
Vậy \(y=88;x=77\).
\(a,6x=7y;x-y=22\)
⇔\(\frac{x}{7}=\frac{y}{6}=\frac{x-y}{7-6}\)\(=\frac{22}{1}=22\).
⇔\(\frac{x}{7}=22=>x=154\).
⇔\(\frac{y}{6}=22=>y=132.\)
Vậy \(x=154\) và \(y=132\).
Các câu sau làm tương tự khi áp dụng dãy tỉ số bằng nhau.