Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: \(2x+\frac{1}{7}=\frac{1}{y}\)
\(\Rightarrow\frac{14x}{7}+\frac{1}{7}=\frac{1}{y}\)
\(\Rightarrow\frac{14x+1}{7}=\frac{1}{y}\)
\(\Rightarrow\left(14x+1\right)y=7\)
Ta có bảng sau:
\(14x+1\) | \(1\) | 7 | -7 | -1 |
\(x\) | 0 | \(\frac{3}{7}\)( loại ) | \(\frac{-4}{7}\) ( loại ) | \(\frac{-1}{7}\) ( loại ) |
\(y\) | \(7\) | 1 | -1 | -7 |
Vậy bộ số \(\left(x;y\right)\) là \(\left(0;7\right)\)
hai số tự nhiên có tổng =828 và giữa chúng có tất cả 15 số tự nhiên khác
Khi đó số bé nhất trong hai số đó là
\(2x+\frac{1}{7}=\frac{1}{y}< =>\frac{2xy+y}{7y}=\frac{7}{7y}.\)(đk :y khác 0)
\(< =>y\left(2x+1\right)=7=>2x+1=\frac{7}{y}.\)
\(dox,y\varepsilon Z=>2x+1\in Z=>7⋮y=>y\inƯ\left(7\right)=\left[+-1;+-7\right]\)
\(=>x\in\left[3;-4;0;-1\right]\)
2x+1/7=1/y => 14x+1/7=1/y =>(14x+1)y=7 do x,y thuộc z nên 7chia hết cho 14x+1 Mà 14x+1 chia 14 dư 1 hoặc dư -13 nên 14x+1=1 =>x=0 thay vào tìm được y=7
\(2x+\frac{1}{7}=\frac{1}{y}\)
\(\Leftrightarrow\frac{14x}{7}+\frac{1}{7}=\frac{1}{y}\)
\(\Leftrightarrow\frac{14x+1}{7}=\frac{1}{y}\)
\(\Leftrightarrow y\left(14x+1\right)=7\)
Sau đó lập bảng ước 7 là ra
Ta có: 2x + 1/7 = 1/y
=>2x - 1/y= -1/7
=>2xy/y - 1/y= -1/7
=>(2xy - 1)/y= -1/7
=>14xy - 7= -y
=>14xy + y= 7
=>y(14x + 1)=7
Từ đây, bạn tự xét từng trường hợp với các thừa số thuộc ước của 7 nhé
Đáp số: x=0, y=7
Ta có:
\(2x+\frac{1}{7}=\frac{1}{y}\)
\(\Rightarrow\frac{14x}{7}+\frac{1}{7}=\frac{1}{y}\)
\(\Leftrightarrow\frac{14x+1}{7}=\frac{1}{y}\)
\(\Rightarrow\frac{7}{14x+1}=y\)
\(\Rightarrow14x+1;y\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng sau:
y | -7 | -1 | 7 | 1 |
14x+1 | -1 | -7 | 1 | 7 |
14x | -2 | -8 | 0 | 6 |
x | \(\frac{-1}{7}\)(loại) | \(\frac{-4}{7}\)(loại) | 0 | \(\frac{3}{7}\)(loại) |
Vậy y=7;x=0
Bạn ơi cái bảng dòng 2 :
tính kiểu nào ra -1 ; -7 - 1 ; 7 vậy
a) Theo tính chất của dãu tỉ số bằng nhau, ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{15}\)
=> 6x = 15
=> x = 5/2
Thay x = 5/2, ta có:
\(\frac{2.\frac{5}{2}+1}{5}=\frac{3y-2}{7}\)
\(\Rightarrow\frac{3y-2}{7}=\frac{6}{5}\)
\(\Rightarrow3y-2=\frac{6}{5}.7=\frac{42}{5}\)
\(\Rightarrow3y=\frac{52}{5}\)
\(\Rightarrow y=\frac{52}{15}\)
Mình ăn cơm đây, câu b tối làm cho
a) Giải:
Ta có: \(\frac{x}{y}=-2\Rightarrow\frac{x}{-2}=\frac{y}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{-2}=\frac{y}{1}=\frac{x+y}{-2+1}=\frac{12}{-1}=-12\)
+) \(\frac{x}{-2}=-12\Rightarrow x=24\)
+) \(\frac{y}{1}=-12\Rightarrow y=-12\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(24;-12\right)\)
b) Giải:
Ta có: \(\frac{x}{y}=\frac{7}{10}\Rightarrow\frac{x}{7}=\frac{y}{10}\)
Đặt \(\frac{x}{7}=\frac{y}{10}=k\)
\(\Rightarrow x=7k;y=10k\)
Mà \(xy=36\)
\(7k10k=36\)
\(\Rightarrow70k^2=36\)
\(\Rightarrow k^2=\frac{18}{35}\) ( sai đề )
c) Giải:
Ta có: \(\frac{2x}{3y}=\frac{-1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}\Rightarrow\frac{-2x}{1}=\frac{3y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{-2x}{1}=\frac{3y}{3}=\frac{-2x+3y}{1+3}=\frac{7}{4}\)
+) \(\frac{-2x}{1}=\frac{7}{4}\Rightarrow x=\frac{-7}{8}\)
+) \(\frac{3y}{3}=\frac{7}{4}\Rightarrow y=\frac{7}{4}\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(\frac{-7}{8};\frac{7}{4}\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+3y+1-2}{5+7}=\frac{2x+3y-1}{12}\)
\(\Rightarrow\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)
TH 1 : \(2x+3y-1=0\)
\(\Rightarrow\frac{2x+1}{5}=0;\frac{3y-2}{7}=0\)
\(\Rightarrow2x+1=0;3y-2=0\)
\(\Rightarrow2x=-1;3y=2\)
\(\Rightarrow x=-\frac{1}{2};y=\frac{2}{3}\)
TH 2 : \(2x+3y-1\ne0\)
\(\Rightarrow6x=12\)
\(\Rightarrow x=2\)
Mà \(\frac{2x+1}{5}=\frac{3y-2}{7}\)
\(\Rightarrow\frac{2.2+1}{5}=\frac{3y-2}{7}\)
\(\Rightarrow1=\frac{3y-2}{7}\)
\(\Rightarrow3y-2=7\)
\(\Rightarrow3y=9\)
\(\Rightarrow y=3\)
Vậy \(\orbr{\begin{cases}x=-\frac{1}{2};y=\frac{2}{3}\\x=2;y=3\end{cases}}\)
Theo t/c dãy tỉ số bằng nhau :
\(\Rightarrow\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
Do \(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
\(\Rightarrow6x=12\Leftrightarrow x=2\)
Xét :\(\frac{2x+1}{5}=\frac{3y-2}{7}\)
\(1=\frac{3y-2}{7}\)
\(\Rightarrow3y=9\Leftrightarrow y=3\)