Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a) 3x = 4y \(\Rightarrow\frac{x}{4}=\frac{y}{3}\)\(\Rightarrow\frac{x}{8}=\frac{y}{6}\)( 1 )
5y = 6z \(\Rightarrow\frac{y}{6}=\frac{z}{5}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{8}=\frac{y}{6}=\frac{z}{5}=\frac{x+y+z}{8+6+5}=\frac{1}{19}\)
\(\Rightarrow x=\frac{8}{19};y=\frac{6}{19};z=\frac{5}{19}\)
b) \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\Rightarrow\frac{3x-3}{9}=\frac{4y-8}{16}=\frac{5z-15}{25}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{3x-3}{9}=\frac{4y-8}{16}=\frac{5z-15}{25}=\frac{\left(3x-3\right)+\left(4y-8\right)+\left(5z-15\right)}{9+16+25}=\frac{-25}{50}=\frac{-1}{2}\)
\(\Rightarrow x=\frac{-1}{2};y=0;z=\frac{1}{2}\)
Mình chỉ phân tích hộ bạn, rồi bạn tự lập bảng và tìm ra giá trị x;y nhé :)
a) xy + x + y = 2
<=> xy + x + y + 1 = 2
<=> x ( y + 1 ) + ( y + 1 ) = 2
<=> ( x + 1 )( y + 1) = 2
b) xy - 10 + 5x - 3y = 2
<=> xy - 3y + 5x - 15 = -3
<=> y ( x - 3 ) + 5 ( x - 3 ) = -3
<=> ( x - 3 )( y + 5 ) = -3
c) xy - 1 = 3x + 5y + 4
<=> xy - 3x - 5y = 5
<=> xy - 3x - 5y + 15 = -10
<=> x ( y - 3 ) - 5 ( y - 3 ) = -10
<=> ( x - 5 ) ( y - 3 ) = -10
d) 3x + 4y - xy = 15
<=> 3x - xy - 12 + 4y = 3
<=> x ( 3 -y ) - 4 ( 3 - y ) = 3
<=> ( x - 4 ) ( 3 - y ) = 3
a) xy - 5y = 13
y . ( x - 5 ) = 13
Lập bảng ta có :
x-5 | 13 | 1 | -13 | -1 |
x | 18 | 6 | -8 | 4 |
y | 1 | 13 | -1 | -13 |
Vậy ( x ; y ) = ( 18 ; 1 ) = ( 6 ; 13 ) = ( -8 ; -1 ) = ( 4 ; -13 )
a,xy-5y=13
=> y[x-5] = 13
Ta có bảng:
y | 1 | 13 | -1 | -13 |
x-5 | 13 | 1 | -13 | -1 |
x | 18 | 6 | -8 | 4 |
Vậy [x,y] = [1,18],[13,6],[-1,-8],[-13,4]
b, 3x-xy - 4y = 16
x[3-y] - 4y = 16
x[3-y] - 4[3-y] = -4
=> x - 4 = -4
=> x = 0
Lời giải:
Đặt $3x+5y=a; x+4y=b$.
Ta có: $2a+b=2(3x+5y)+x+4y=7x+14y=7(x+2y)\vdots 7$
$ab\vdots 7\Rightarrow a\vdots 7$ hoặc $b\vdots 7$
Nếu $a\vdots 7$. Khi đó: $2a+b\vdots 7\Rightarrow b\vdots 7$
$\Rightarrow ab\vdots (7.7)$ hay $ab\vdots 49$
Nếu $b\vdots 7$. Khi đó: $2a+b\vdots 7\Rightarrow 2a\vdots 7\Rightarrow a\vdots 7$
$\Rightarrow ab\vdots (7.7)$ hay $ab\vdots 49$
Vậy ta có đpcm.