![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Thời gian có hạn copy cái này hộ mình vào google xem nha :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 401 người nhận rồi
OK
\(\left(3x+1\right)\left(x-2\right)< 0.\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1>0,x-2< 0\\3x+1< 0,x-2>0\end{cases}}\)
\(Th1\hept{\begin{cases}3x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}3x>-1\\x< 2\end{cases}\Leftrightarrow\hept{\begin{cases}x>\frac{-1}{3}\\x< 2\end{cases}\Rightarrow}}}\frac{-1}{x}< x< 2\)
\(Th2:\hept{\begin{cases}3x+1< 0\\x-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}3x< -1\\x>2\end{cases}\Leftrightarrow\hept{\begin{cases}x< \frac{-1}{2}\\x>2\end{cases}\left(loại\right)}}}\)
Vậy \(\frac{-1}{x}< x< 2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Để M là số nguyên
Thì (x2–5) chia hết cho (x2–2)
==>(x2–2–3) chia hết cho (x2–2)
==>[(x2–2)—3] chia hết cho (x2–2)
Vì (x2–2) chia hết cho (x2–2)
Nên 3 chia hết cho (x2–2)
==> (x2–2)€ Ư(3)
==> (x2–2) €{1;-1;3;-3}
TH1: x2–2=1
x2=1+2
x2=3
==> ko tìm được giá trị của x
TH2: x2–2=-1
x2=-1+2
x2=1
12=1
==>x=1
TH3: x2–2=3
x2=3+2
x2=5
==> không tìm được giá trị của x
TH4: x2–2=-3
x2=-3+2
x2=-1
(-1)2=1
==> x=-1
Vậy x € {1;—1)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2^x:1+2^x:2+...+2^x:49=2^{49}-1\)
\(2^x.1+2^x.\frac{1}{2}+...+2^x.\frac{1}{49}=2^{49}-1\)
\(2^x.\left(1+\frac{1}{2}+...+\frac{1}{49}\right)=2^{49}-1\)
Đặt: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}\)
=> \(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}\)
=> \(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^{49}}\right)\)
=> \(A=1-\frac{1}{2^{49}}=\frac{2^{49}-1}{2^{49}}\)
\(2^{x-1}+2^{x-2}+2^{x-3}+...+2^{x-49}=2^{49}-1\)
<=> \(\frac{2^x}{2}+\frac{2^x}{2^2}+\frac{2^x}{2^3}+...+\frac{2^x}{2^{49}}=2^{49}-1\)
<=> \(2^x\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}\right)=2^{49}-1\)
<=> \(2^x.\frac{2^{49}-1}{2^{49}}=2^{49}-1\)
<=> \(2^x=2^{49}\)
<=> x = 49.
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải típ nèk
Ta có :
\(c)\) \(\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-2=0\\x+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\x=-2\end{cases}}}\)
Vậy nghiệm của đa thức \(\left(x-2\right)\left(x+2\right)\) là \(x=-2\) hoặc \(x=2\)
\(d)\) \(\left(x-1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\sqrt{-1}\left(loai\right)\end{cases}}}\)
Vậy nghiệm của đa thức \(\left(x-1\right)\left(x^2+1\right)\) là \(x=1\)
\(e)\) \(x^2-5x+4=0\)
\(\Leftrightarrow\)\(\left(x^2-x\right)+\left(-4x+4\right)=0\)
\(\Leftrightarrow\)\(x\left(x-1\right)+\left(-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-4=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}}\)
Vậy nghiệm của đa thức \(x^2-5x+4\) là \(x=1\) hoặc \(x=4\)
\(f)\) \(2x^2+3x+1=0\)
\(\Leftrightarrow\)\(\left(2x^2+2x\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\)\(2x\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\left(2x+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x+1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-1\\x=-1\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{-1}{2}\\x=-1\end{cases}}\)
Vậy nghiệm của đa thức \(2x^2+3x+1\) là \(x=\frac{-1}{2}\) hoặc \(x=-1\)
Chúc bạn học tốt ~
Ta có :
\(a)\) \(x^2-2=0\)
\(\Leftrightarrow\)\(x^2=2\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
Vậy nghiệm của đa thức \(x^2-2\) là \(x=\sqrt{2}\) hoặc \(x=-\sqrt{2}\)
\(b)\) \(x^2-x=0\)
\(\Leftrightarrow\)\(x\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy nghiệm của đa thức \(x^2-x\) là \(x=0\) hoặc \(x=1\)
Chúc bạn học tốt ~
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng KT \(\left|x\right|\ge0\)\(\forall\)\(x\)
BG :
Ta có : \(\left|x-\frac{2}{3}\right|\ge0\)\(\forall\)\(x\)
nên : \(\left|x-\frac{2}{3}\right|+\frac{3}{4}\ge0+\frac{3}{4}\)\(\forall\)\(x\)
hay \(A\ge\frac{3}{4}\)\(\forall\)\(x\)
Dấu " = " xảy ra :
\(\Leftrightarrow\)\(\left|x-\frac{2}{3}\right|=0\)
\(\Leftrightarrow\)\(x-\frac{2}{3}=0\)
\(\Leftrightarrow\)\(x=\frac{2}{3}\)
Vậy GTNN của \(A=\frac{3}{4}\)đạt được khi \(x=\frac{2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
GTNN của A:
Khi \(x< -98:A=1-x-x-98=-2x-97>99\)
Khi \(-98\le x< 1:A=1-x+x+98=99\)
Khi \(x\ge1:A=x-1+x+98=2x+97\ge99\)
Vậy GTNN của A là 99 khi \(-98\le x\le1.\)
Tượng tự với biểu thức B và C.
\(\left(2x-5\right)^{200}+|x+1|=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-5=0\\x+1=0\end{cases}}\)(vì \(\left(2x-5\right)^{200}\ge0;|x+1|\ge0\))
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\x=-1\end{cases}}\)
Vậy không có giá trị nào của x.
Khi \(x< -1:B=-x-1-x+2-x+5=-3x+6>9\)
Khi \(-1\le x< 2:B=x+1-x+2-x+5=-x+8>6\)
Khi \(2\le x< 5:B=x+1+x-2-x+5=x+4\ge6\)
khi \(x\ge5:B=x+1+x-2+x-5=3x-6\ge9\)
Vậy GTNN của B là 6 khi \(2\le x< 5\)
Tìm GTNN của C tương tự.
![](https://rs.olm.vn/images/avt/0.png?1311)
x ( x - 2 ) + x - 2 = 0
x ( x - 2 ) + ( x - 2 ) . 1 = 0
( x - 2 ) ( x + 1 ) = 0
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy x = 2 ; x = -1
\(x.x-2+x-2=0\)
\(\Leftrightarrow x-2.x+1=0\)
\(=x-2=0\Rightarrow x=0\)
\(=x+1\Rightarrow x=-1\)
\(\Rightarrow x=-1;x=2\)