\(x^3+6x^2+12x+8=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

\(x^3+6x^2+12x+8=0\)

\(< =>\left(x+2\right)^3=0\)

x+2=0 suy ra x = -2

23 tháng 7 2019
https://i.imgur.com/C129nJV.jpg
18 tháng 8 2021

1) <=> x2 - 4x - x2 + 8 = 0 <=> x2 - 4x + 8 =  0 

Dễ thấy phương trình vô nghiệm vì x2 - 4x + 8 = ( x - 2 )2 + 4 > 0

2) <=> ( x - 1 )3 = 0 <=> x = 1

3) <=> ( x - 2 )3 = 0 <=> x = 2

4) <=> ( 2x - 1 )3 = 0 <=> x = 1/2

a: \(A=\left(\dfrac{2\left(2x+1\right)}{2\left(2x+4\right)}-\dfrac{x}{3x-6}-\dfrac{2x^3}{3x^3-12x}\right):\dfrac{6x+13x^2}{24x-12x^2}\)

\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^3}{3x\left(x^2-4\right)}\right):\dfrac{x\left(13x+6\right)}{x\left(24-12x\right)}\)

\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^2}{3\left(x-2\right)\left(x+2\right)}\right):\dfrac{13x+6}{-12\left(x-2\right)}\)

\(=\dfrac{3\left(2x+1\right)\left(x-2\right)-2x\left(x+2\right)-4x^2}{6\left(x+2\right)\left(x-2\right)}\cdot\dfrac{-12\left(x-2\right)}{13x+6}\)

\(=\dfrac{3\left(2x^2-3x-2\right)-2x^2-4x-4x^2}{x-2}\cdot\dfrac{-2}{13x+6}\)

\(=\dfrac{6x^2-9x-6-6x^2-4x}{x-2}\cdot\dfrac{-2}{13x+6}\)

\(=\dfrac{-\left(13x+6\right)\cdot\left(-2\right)}{\left(13x+6\right)\left(x-2\right)}=\dfrac{2}{x-2}\)

b: Để A>0 thì x-2>0

hay x>2

Để A>-1 thì A+1>0

\(\Leftrightarrow\dfrac{2+x-2}{x-2}>0\)

=>x/x-2>0

=>x>2 hoặc x<0

15 tháng 7 2018

\(\left(\frac{x}{2}+3\right)\left(5-6x\right)+\left(12x-2\right)\left(\frac{x}{4}+3\right)=0\)

\(\Rightarrow\frac{5x}{2}-3x^2+15-18x+3x^2+36x-\frac{x}{2}-6=0\)

\(\Rightarrow\frac{5x}{2}-\frac{x}{2}+15-6-\left(18x-36x\right)=0\)

\(\Rightarrow2x+9+18x=0\)

\(\Rightarrow20x=-9\)

\(\Rightarrow x=-\frac{9}{20}\)

18 tháng 11 2018

ta có \(x^3-6x^2+12x-7=0\Leftrightarrow\)\(x^3-x^2-5x^2+5x+7x-7=0\Leftrightarrow\)\(^{x^2\left(x-1\right)-5x\left(x-1\right)+7\left(x-1\right)=0}\Leftrightarrow\)\(\left(x-1\right)\left(x^2-5x+7\right)\)=0 mà \(x^2-5x+7=x^2-2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2+7\)\(=\left(x-\frac{5}{2}\right)^2-\frac{25}{4}+7=\left(x-\frac{5}{2}\right)^2+\frac{3}{4}>0\)(vô nghiệm\(\Rightarrow x-1=0\Leftrightarrow x=1\)

18 tháng 11 2018

x3 - x2 - 5x2 + 5x + 7x - 7 = 0

x2(x - 1) - 5x(x - 1) + 7(x - 1) = 0

(x2 - 5x + 7)(x - 1) = 0

=> x2 - 5x + 7 = 0 hoặc x - 1 = 0

+) Với x - 1 = 0 => x = 1

+) Với x2 - 5x + 7 = 0

=> x2 - 2x2,5 + 6,25 + 0,75 = 0

=> (x - 2,5)2 + 0,75 = 0

Vì \(\left(x-2,5\right)^2\ge0\Rightarrow\left(x-2,5\right)^2+0,75>0\)

=> Không có giá trị của x thoả mãn

Vậy x = 1

19 tháng 7 2016

\(8x^3+12x^2+6x+1=0\Leftrightarrow8x^3+4x^2+8x^2+4x+2x+1=0\Leftrightarrow4x^2\left(2x+1\right)+4x\left(2x+1\right)+\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(4x^2+4x+1\right)=0\Leftrightarrow\left(2x+1\right)\left(2x+1\right)^2=0\Leftrightarrow\left(2x+1\right)^3=0\Leftrightarrow x=-\frac{1}{2}\)

Nếu bạn đã học hằng đẳng thức thì sẽ dễ làm được

19 tháng 7 2016

= (2x)3+3×(2x)2+3×2x×12+13​=(2x+1)3

12 tháng 8 2019

b) \(7x\left(x-2\right)-\left(x-2\right)=0\) 

<=>  \(\left(7x-1\right)\left(x-2\right)=0\)

=> x=1/7  hoặc x=2

c) <=>  (2x-1)3   =0 

=> x=1/2

d)<=>  \(\left(2x-3\right)\left(2x+3\right)-x\left(2x-3\right)=0\)

<=>  \(\left(2x-3\right)\left(x+3\right)=0\)

=> x=3/2  hoặc x=-3

e) <=>\(x^2\left(x+5\right)+9\left(x+5\right)=0\)

<=> \(\left(x+5\right)\left(x^2+9\right)=0\)

=> x=-5

f) \(x^3-6x^2-x+30=0\)

<=>\(x^3+2x^2-8x^2-16x+15x+30=0\)

<=>\(x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)=0\)

<=>\(\left(x+2\right)\left(x^2-5x-3x+15\right)=0\)

<=> \(\left(x+2\right)\left(x-5\right)\left(x-3\right)=0\)

=> x=-2 hoặc x=5 hoặc x=3

AH
Akai Haruma
Giáo viên
29 tháng 11 2018

Mình nghĩ đề bài là:

CMR : \(C=\frac{8-12x+6x^2-x^3}{x^3-2x^2+x-2}< 0\)

-----------------------

ĐK: \(x^3-2x^2+x-2\neq 0\)

\(\Leftrightarrow x^2(x-2)+(x-2)\neq 0\)

\(\Leftrightarrow (x-2)(x^2+1)\neq 0\Rightarrow x\neq 2\)

Ta có: \(C=\frac{8-12x+6x^2-x^3}{x^3-2x^2+x-2}=-\frac{x^3-6x^2+12x-8}{(x^2+1)(x-2)}\)

\(=-\frac{(x-2)^3}{(x^2+1)(x-2)}=-\frac{(x-2)^2}{x^2+1}\)

Với mọi \(x\neq 2\Rightarrow (x-2)^2>0\), mà \(x^2+1>0, \forall x\in\mathbb{R}\)

\(\Rightarrow \frac{(x-2)^2}{x^2+1}>0\Rightarrow C=-\frac{(x-2)^2}{x^2+1}< 0\) (đpcm)

16 tháng 12 2018

đúng rồi đề vậy cảm ơn nha

30 tháng 9 2018

a, (a, (x + 2)2 - 9 = 0

⇒ (x + 2)2 = 0 + 9 = 9

⇒ (x + 2)2 = \(\left(\pm3\right)^2\)

⇒ x + 2 = \(\pm3\)

\(\Rightarrow\left\{{}\begin{matrix}x+2=3\\x+2=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3-2\\x=-3-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

Vậy x ∈ {1; -5}

b, \(\left(x+2\right)^2-x^2+4=0\)

⇒ x2 + 4x + 4 - x2 + 4 =0

⇒ 4x + 8 = 0

⇒ 4 (x + 2) = 0

⇒ x + 2 = 0

⇒ x = 0 - 2

⇒ x = -2

Vậy x = -2

c, (x - 3)2 = (2 - 3x)2

⇒ (x - 3)2 - (2 - 3x)2 = 0

⇒ x2 - 6x + 9 - 4 + 12x - 9x2 = 0

⇒ 6x - 8x2 + 5 = 0

⇒2 \(\left(3x-4x^2+\dfrac{5}{2}\right)\)= 0

⇒ 3x - 4x2 + \(\dfrac{5}{2}\) = 0

⇒ - (4x2- 3x + \(\dfrac{9}{16}+\dfrac{31}{16}\)) = 0

⇒ - (4x2 - 3x + \(\dfrac{9}{16}\)) - \(\dfrac{31}{16}\) = 0

⇒ - (2x - \(\dfrac{3}{4}\))2 = \(\dfrac{31}{16}\) (vô lí)

Vậy x ∈ ∅


30 tháng 9 2018

Những hằng đẳng thức đáng nhớ (Tiếp 1)