Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) <=> x2 - 4x - x2 + 8 = 0 <=> x2 - 4x + 8 = 0
Dễ thấy phương trình vô nghiệm vì x2 - 4x + 8 = ( x - 2 )2 + 4 > 0
2) <=> ( x - 1 )3 = 0 <=> x = 1
3) <=> ( x - 2 )3 = 0 <=> x = 2
4) <=> ( 2x - 1 )3 = 0 <=> x = 1/2
a) \(4x^2-4x=-1\)
\(\Leftrightarrow4x\left(x-1\right)=-1\)
\(\Leftrightarrow4x=-1\) hoặc \(x-1=-1\)
\(\Leftrightarrow x=\dfrac{-1}{4}\) hoặc \(x=0\)
Vậy S={\(\dfrac{-1}{4};0\)}
\(\text{a) }4x^2-4x=-1\\ \Leftrightarrow4x^2-4x+1=0\\ \Leftrightarrow\left(2x\right)^2-2\cdot2x\cdot1+1^2=0\\ \Leftrightarrow\left(2x-1\right)^2=0\\ \Leftrightarrow2x-1=0\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\\ \text{Vậy }x=\dfrac{1}{2}\\ \)
\(\text{ b) }8x^3+12x^2+6x+1=0\\ \Leftrightarrow\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2+1^3=0\\ \Leftrightarrow\left(2x+1\right)^3=0\\ \Leftrightarrow2x+1=0\\ \Leftrightarrow2x=-1\\ \Leftrightarrow x-\dfrac{1}{2}\\ \text{Vậy }x=-\dfrac{1}{2}\)
a/ \(\left(2x-3\right)^2-\left(3x+2\right)^2=5x\left(2-x\right)\)
<=> \(\left(2x-3-3x-2\right)\left(2x-3+3x+2\right)=5x\left(2-x\right)\)
<=> \(\left(-x-5\right)\left(5x-1\right)=5x\left(2-x\right)\)
<=> \(-5x^2-25x+x+5=10x-5x^2\)
<=> \(10x+25x-x=5\)
<=> \(34x=5\)
<=> \(x=\frac{5}{34}\)
b/ pt <=> \(2^3x^3-3.2^2.x^2.1+3.2.x.1^2-1^3=0\)
<=> \(\left(2x-1\right)^3=0\)
<=> 2 x - 1 = 0
<=> x = 1/2.
b) \(7x\left(x-2\right)-\left(x-2\right)=0\)
<=> \(\left(7x-1\right)\left(x-2\right)=0\)
=> x=1/7 hoặc x=2
c) <=> (2x-1)3 =0
=> x=1/2
d)<=> \(\left(2x-3\right)\left(2x+3\right)-x\left(2x-3\right)=0\)
<=> \(\left(2x-3\right)\left(x+3\right)=0\)
=> x=3/2 hoặc x=-3
e) <=>\(x^2\left(x+5\right)+9\left(x+5\right)=0\)
<=> \(\left(x+5\right)\left(x^2+9\right)=0\)
=> x=-5
f) \(x^3-6x^2-x+30=0\)
<=>\(x^3+2x^2-8x^2-16x+15x+30=0\)
<=>\(x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)=0\)
<=>\(\left(x+2\right)\left(x^2-5x-3x+15\right)=0\)
<=> \(\left(x+2\right)\left(x-5\right)\left(x-3\right)=0\)
=> x=-2 hoặc x=5 hoặc x=3
\(8x^3+12x^2+6x+1=0\)
\(\Leftrightarrow\)\(\left(2x+1\right)^3=0\)
\(\Leftrightarrow\)\(2x+1=0\)
\(\Leftrightarrow\)\(x=-\frac{1}{2}\)
Vậy....
Ta có \(8x^3+12x^2+6x+1=0\)
\(\Rightarrow8.\left(x^3+3x^2.1+3.x.1^2+1^3\right)=0\)
\(\Rightarrow8.\left(x+1\right)^3=0\)
\(\Rightarrow\left(x+1\right)^3=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
(*)\(\left(2x-3\right)^2-\left(3x-2\right)^2=5x\left(2-x\right)\)
\(\Leftrightarrow\left(2x-3+3x+2\right)\left(2x-3-3x-2\right)-5x\left(2-x\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(-x-5\right)-5x\left(2-x\right)=0\)
\(\Leftrightarrow-5x^2-25x+x+5-10x+5x^2=0\)
\(\Leftrightarrow-34x=-5\)
\(\Rightarrow x=\dfrac{34}{5}\)
Đề câu 1 bị sao đó.
(*)\(8x^3-12x^2+6x-1=0\)
\(\Leftrightarrow\left(2x-1\right)^3=0\)
\(\Leftrightarrow2x-1=0\)
\(\Rightarrow x=\dfrac{1}{2}\)
1. \(A=\dfrac{4\left(2x-1\right)}{1^3-8x^3}\)=\(\dfrac{4\left(2x-1\right)}{-\left(2x-1\right)\left(4x^2+2x+1\right)}\) = \(\dfrac{4}{-4x^2-2x-1}\)
2. \(B=\dfrac{2x\left(x+3\right)}{x^3+3x^2+4x^2+12x}\)=\(\dfrac{2x\left(x+3\right)}{x^2\left(x+3\right)+4x\left(x+3\right)}\)=\(\dfrac{2x\left(x+3\right)}{\left(x^2+4x\right)\left(x+3\right)}\)=\(\dfrac{2x}{x^2+4x}=\dfrac{2x}{x\left(x+4\right)}=\dfrac{2}{x+4}\)
\(8x^3+12x^2+6x+1=0\Leftrightarrow8x^3+4x^2+8x^2+4x+2x+1=0\Leftrightarrow4x^2\left(2x+1\right)+4x\left(2x+1\right)+\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(4x^2+4x+1\right)=0\Leftrightarrow\left(2x+1\right)\left(2x+1\right)^2=0\Leftrightarrow\left(2x+1\right)^3=0\Leftrightarrow x=-\frac{1}{2}\)
Nếu bạn đã học hằng đẳng thức thì sẽ dễ làm được
= (2x)3+3×(2x)2+3×2x×12+13=(2x+1)3