Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em thử nhé! Hên xui thôi. Hên tìm được nghiệm đúng ngay từ đầu thì dễ, còn tìm không đúng thì không những khó mà còn sai -_-"
Gọi biểu thức trên là P
Nhận xét x =1 là một nghiệm. Ta phân tích P trở thành:
\(P=\left(x+1\right)\left(x^2-4x+3m+3\right)\)
Do đó để P có 3 nghiệm phân biệt thì \(x^2-4x+3m+3\) có hai nghiệm phân biệt.
Xét phương trình \(x^2-4x+3m+3=0\). Để phương trình có hai nghiệm phân biệt thì:
\(\Delta'=\left(-2\right)^2-\left(3m+3\right)>0\Leftrightarrow m< \frac{1}{3}\)
Xem ra ok quá nhỉ ạ? Hên quá rồi :xD
Giải:
a) \(\sqrt{\left(x-3\right)^2}=3-x\)
\(\Leftrightarrow\left|x-3\right|=3-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=3-x\\x-3=x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+x=3+3\\x-x=-3+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=6\\0x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\0x=0\end{matrix}\right.\)
Vậy ...
b) \(\sqrt{25-20x+4x^2}+2x=5\)
\(\Leftrightarrow\sqrt{5^2-2.5.2x+\left(2x\right)^2}+2x=5\)
\(\Leftrightarrow\sqrt{\left(5-2x\right)^2}+2x=5\)
\(\Leftrightarrow\left|5-2x\right|+2x=5\)
\(\Leftrightarrow\left|5-2x\right|=5-2x\)
\(\Leftrightarrow\left[{}\begin{matrix}5-2x=5-2x\\5-2x=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x+2x=5-5\\-2x-2x=-5-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0x=0\\-4x=-10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy ...
c) \(\sqrt{1-12x+36x^2}=5\)
\(\Leftrightarrow\sqrt{\left(1-6x\right)^2}=5\)
\(\Leftrightarrow\left|1-6x\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}1-6x=5\\1-6x=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}6x=1-5\\6x=1-\left(-5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}6x=-4\\6x=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=1\end{matrix}\right.\)
Vậy ...
Bài 1:
Ta có: \(\left(2x^2+x-4\right)^2-\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(2x^2+x-4-2x+1\right)\left(2x^2+x-4+2x-1\right)=0\)
\(\Leftrightarrow\left(2x^2-x-3\right)\left(2x^2+3x-5\right)=0\)
\(\Leftrightarrow\left(2x^2+2x-3x-3\right)\left(2x^2-2x+5x-5\right)=0\)
\(\Leftrightarrow\left[2x\left(x+1\right)-3\left(x+1\right)\right]\left[2x\left(x-1\right)+5\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-3\right)\left(x-1\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-3=0\\x-1=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=3\\x=1\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{3}{2}\\x=1\\x=\frac{-5}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;\frac{3}{2};1;\frac{-5}{2}\right\}\)
a: \(A=\dfrac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
b: Để A=2 thì căn x+2=2 căn x-6
=>-căn x=-8
=>x=64
5.
\(\Leftrightarrow x^2+7-\left(x+4\right)\sqrt{x^2+7}+4x=0\)
Đặt \(\sqrt{x^2+7}=t>0\)
\(\Rightarrow t^2-\left(x+4\right)t+4x=0\)
\(\Delta=\left(x+4\right)^2-16x=\left(x-4\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\frac{x+4+x-4}{2}=x\\t=\frac{x+4-x+4}{2}=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+7}=x\left(x\ge0\right)\\\sqrt{x^2+7}=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+7=x^2\left(vn\right)\\x^2+7=16\end{matrix}\right.\)
Câu 6 bạn coi lại đề
4.
ĐKXĐ: ...
Đặt \(\sqrt{x+3}=a\ge0\)
\(\Rightarrow x+a=\sqrt{5x^2-a^2}\)
\(\Rightarrow x^2+2ax+a^2=5x^2-a^2\)
\(\Rightarrow2x^2-ax-a^2=0\)
\(\Rightarrow\left(x-a\right)\left(2x+a\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=x\\a=-2x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+3}=x\left(x\ge0\right)\\\sqrt{x+3}=-2x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=x^2\left(x\ge0\right)\\x+3=4x^2\left(x\le0\right)\end{matrix}\right.\)
( x2 - 4x + 2 )2 + ( x2 - 4x -4 ) = 0
( x2 - 2 )2 - ( x2 + 4x +4 ) = 0
( x2 - 2 )2 - ( x2 + 2 )2 = 0
(x2 -2 - x2 -2 ).( x2 -2 + x2 +2 ) = 0
-4 . 2x2 =0
-8x2 = 0
x2 = 0
=> x = 0
Vậy x=0
\(\left(x^2-4x+2\right)^2+x^2-4x-4=0\)
<=> \(\left(x^2-4x+2\right)^2+\left(x^2-4x+2\right)-6=0\)
Đặt: \(x^2-4x+2=t\)khi đó pt trở thành:
\(t^2+t-6=0\)
<=> \(\left(t-2\right)\left(t+3\right)=0\)
<=> \(\orbr{\begin{cases}t=2\\t=-3\end{cases}}\)
đến đây về pt bậc 2 bạn tự làm nhé
⇔\(\sqrt{x^2-2x.3+3^2}=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1}\)
⇔\(\sqrt{\left(x-3\right)^2}=\sqrt{\left(\sqrt{3}+1\right)^2}\)
⇔\(\left|x-3\right|=\left|\sqrt{3}+1\right|\)
⇔\(x-3=\sqrt{3}+1\) hoặc \(3-x=\sqrt{3}+1\)
TH1: \(x=\sqrt{3}+4\)
TH2: \(x=2-\sqrt{3}\)
Kiểm tra lại nha ^^