Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b
\(\left|6+x\right|\ge0;\left(3+y\right)^2\ge0\Rightarrow\left|6+x\right|+\left(3+y\right)^2\ge0\)
Suy ra \(\left|6+x\right|+\left(3+y\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}6+x=0\\3+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=-3\end{cases}}\)
a
Ta có:\(\left|3x-12\right|=3x-12\Leftrightarrow3x-12\ge0\Leftrightarrow3x\ge12\Leftrightarrow x\ge4\)
\(\left|3x-12\right|=12-3x\Leftrightarrow3x-12< 0\Leftrightarrow3x< 12\Leftrightarrow x< 4\)
Với \(x\ge4\) ta có:
\(3x-12+4x=2x-2\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=2\left(KTMĐK\right)\)
Với \(x< 4\) ta có:
\(12-3x+4x=2x-2\)
\(\Rightarrow10=x\left(KTMĐK\right)\)
a) \(x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
b) \(x^2-3x+2=0\Leftrightarrow x^2-3x+\frac{9}{4}-\frac{1}{4}=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=\frac{1}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{2}=\sqrt{\frac{1}{4}}=\frac{1}{2}\\x-\frac{3}{2}=-\sqrt{\frac{1}{4}}=-\frac{1}{2}\end{cases}}\)
Giải tiếp nha
\(3x\left(x+1\right)^2-3x^2\left(x+2\right)-4=0\)
\(3x\left(x+1\right)^2-3x^2\left(x+2\right)=4\)
\(3x^3+6x^2+3x-3x^3+6x^2=4\)
\(3x=4\)
\(x=\frac{4}{3}\)
(4x - 9) (2,5 + 2/3x)=0
=> 4x-9 = 0 hoặc 2,5 +2/3x = 0
=> 4x = 9 hoặc 2/3x = -2,5
=> x = 9/4 hoặc x = -7,5/2
kết luận : vậy x thuộc {9/4; -7,5/2}
(x - 5)2 = ( 1 - 3x)2
=> x-5 = 1-3x
=> x-5+3x = 1
=>4x-5 =1
=> 4x=6
=> x=3/2
|x|=3
=> X=3 hoặc x=-3
3| x+1| - 2=1
=> 3lx+1l = 3
=> lx+1l =1
=> x+1 = 1 hoặc x+1= -1
=> x=0 hoặc x = -2
3|x + 1| + 2=1
=> 3lx+1l = -1
=> lx+1l = -1/3
vô lý vì giá trị tuyệt đối của 1 số luôn luôn lớn hơn hoặc bằng 0
=> x thuộc rỗng
c) TH1 : x <=3 thì |3 -x| = 3 -x do đó ta đc 3 - x + 3x - 1 =0=> x = -1
TH2 : x > 3 thì |3 -x| = x -3, do đó ta đc : x - 3 + 3x -1 =0 => x = 1
a, Xét (3x-5)^2006; (y^2-1)^2008;9x-7)^2100 lú nào cũng lớn hơn hoặc bằng 0 nên suy ra (3x-5)^2006 +(Y^2-1)^2008+(x-7)^2100 >hoặc bằng 0 . Dể cộng vào bằng 0 thì (3x-5)^2006 =0; (y^2-1)^2008=0; (x-7)^2100=0 suy ra 3x-5=0;Y^2-1=0;'x-7=0
3x=5,x=5/3; y^2=1 ,y=+ - 1;x=7
Bài 1:
a) -6x + 3(7 + 2x)
= -6x + 21 + 6x
= (-6x + 6x) + 21
= 21
b) 15y - 5(6x + 3y)
= 15y - 30 - 15y
= (15y - 15y) - 30
= -30
c) x(2x + 1) - x2(x + 2) + (x3 - x + 3)
= 2x2 + x - x3 - 2x2 + x3 - x + 3
= (2x2 - 2x2) + (x - x) + (-x3 + x3) + 3
= 3
d) x(5x - 4)3x2(x - 1) ??? :V
Bài 2:
a) 3x + 2(5 - x) = 0
<=> 3x + 10 - 2x = 0
<=> x + 10 = 0
<=> x = -10
=> x = -10
b) 3x2 - 3x(-2 + x) = 36
<=> 3x2 + 2x - 3x2 = 36
<=> 6x = 36
<=> x = 6
=> x = 5
c) 5x(12x + 7) - 3x(20x - 5) = -100
<=> 60x2 + 35x - 60x2 + 15x = -100
<=> 50x = -100
<=> x = -2
=> x = -2
ý (h) sai đầu bài .
k, \(\left(x+1\right)^3+27=0\)
\(\Leftrightarrow\left(x+1\right)^3=-27\)
\(\Leftrightarrow x+1=-3\)
\(\Leftrightarrow x=-4\)
m, \(\left(3x+\frac{1}{2}\right)^3+\frac{1}{27}=0\)
\(\Leftrightarrow\left(3x+\frac{1}{2}\right)^3=-\frac{1}{27}\)
\(\Leftrightarrow3x+\frac{1}{2}=-\frac{1}{3}\)
\(\Leftrightarrow3x=-\frac{5}{6}\)
\(\Leftrightarrow x=-\frac{5}{18}\)
i, \(x^3-x=0\)
\(\Leftrightarrow x.\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
n, \(x^2+\frac{1}{2}x=0\)
\(\Leftrightarrow x.\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+\frac{1}{2}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)
a) \(3x^2+2x-1=3x^2+3x-x-1=3x\left(x+1\right)-\left(x+1\right)=\left(x+1\right)\left(3x-1\right)\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\3x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}}\)
b) \(2x^2+7x-4=2x^2-x+8x-4=x\left(2x-1\right)+4\left(2x-1\right)=\left(2x-1\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-4\end{cases}}}\)
c) \(x^2-2x-24=x^2-2x+1-25=\left(x-1\right)^2-5^2=\left(x-1-5\right)\left(x-1+5=0\right)\)
\(\Rightarrow\orbr{\begin{cases}x-1-5=0\\x-1+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=6\\x=4\end{cases}}}\)
x2 - 3x + 2 = 0
<=> x2 - 2x - x + 2 = 0
<=> x(x - 2) - (x - 2) = 0
<=> (x - 1)(x - 2) = 0
<=> x - 1 = 0 hoặc x - 2 = 0
<=> x = 1 hoặc x = 2
Vậy S = {1; 2}
`x^2 - 3x + 2 = 0`
$\rightrightarrows$ `x^2 - x + 2-2x=0`
$\rightrightarrows$ `x( x-1 ) - 2( x-1 ) = 0`
$\rightrightarrows$ `(x-2)(x-1)=0`
$\rightrightarrows$ \(\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)
$\rightrightarrows$ \(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy `x in { 1;2}`