Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Tìm x
a) (x+1)(x-2)<0
=>Có 2TH:
TH1:
x+1<0=>x< -1
x-2>0=>x>2
=>Vô lí
TH2:
x+1>0=>x> -1
x-2<0=>x<2
=> -1<x<2
Vậy x thuộc {0;1}
b) Tương tự a thôi ạ.
c) (x-2)(3x+2)
=> Có hai TH:
TH1:
x-2<0=>x<2
3x+2<0=>3x< -2=>x< -2/3
=>x< -2/3
TH2:
x-2>0=>x>2
3x+2>0=>3x> -2=>x> -2/3
=>x>2
Vậy x< -2/3 hoặc x>2
2)Tìm x
x.x=x
<=>x²-x=0
<=>x(x-1)=0
<=>x=0 hoặc x=1
a) \(\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=3\\2x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
c) \(2x\left(3x-1\right)-3x\left(5+2x\right)=0\)
\(\Rightarrow x\left[2\left(3x-1\right)-3\left(5+2x\right)\right]=0\)
\(\Rightarrow x\left(6x-2-15-6x\right)\)
\(\Rightarrow-16x=0\)
\(\Rightarrow x=0\)
d) \(\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\)
\(\Rightarrow9x^2-4-4x+4=0\)
\(\Rightarrow9x^2-4x=0\)
\(\Rightarrow x\left(9x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)
\(a,\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ b,\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
Lời giải:
a.
PT $\Leftrightarrow -5x^2+15x-5+x+5x^2=x-2$
$\Leftrightarrow 16x-5=x-2$
$\Leftrightarrow 15x=3$
$\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}$
b.
PT $\Leftrightarrow -4x^2+20x+7x^2-28x-3x^2=12$
$\Leftrightarrow -8x=12$
$\Leftrightarrow x=\frac{-3}{2}$
1.a) có: \(|x-\frac{3}{2}|,|x+1|,\left|x-2\right|\ge0\Rightarrow4x\ge0\Rightarrow x\ge0\)
\(x\ge0\Rightarrow x-\frac{3}{2}\ge\frac{-3}{2}\Rightarrow\left|x-\frac{3}{2}\right|\ge\left|\frac{-3}{2}\right|=\frac{3}{2}\Rightarrow\left|x-\frac{3}{2}\right|=x-\frac{3}{2}\)
cmtt: \(|x-2|=x-2\)
\(\Rightarrow3x-\frac{3}{2}+1-2=4x\)
\(\Rightarrow3x-\frac{5}{2}=4x\)
\(\Rightarrow x=\frac{-5}{2}\left(ko,t/m\right)\)
`D(x)=3x^3+x=0`
`\Leftrightarrow 3x^2*x+x=0`
`\Leftrightarrow x(3x^2+1)=0`
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\3x^2+1=0\end{matrix}\right.\)
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\3x^2=-1\text{(loại)}\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `x=0`
`E(x)=x^2-3x+2=0`
`\Leftrightarrow x^2-2x-x+2=0`
`\Leftrightarrow (x^2-2x)-(x-2)=0`
`\Leftrightarrow x(x-2)-(x-2)=0`
`\Leftrightarrow (x-2)(x-1)=0`
`\Leftrightarrow `\(\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\)
`\Leftrightarrow `\(\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `x= {2 ; 1}`
`F(x)=4x^2-4x+1=0`
`\Leftrightarrow (2x+1)^2=0`
`\Leftrightarrow 2x-1=0`
`\Leftrightarrow 2x=1`
`\Leftrightarrow x=1/2`
Vậy, nghiệm của đa thức là `x=1/2`
`D(x)=3x^3+x`
`-> 3x^3 +x=0`
`=> x(3x^2 +1)=0`
\(\Rightarrow\left[{}\begin{matrix}x=0\\3x^2+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3x^2=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x\in\varnothing\end{matrix}\right.\)
Vậy \(x\in\left\{0\right\}\)
__
`E(x)=x^2-3x+2`
`-> x^2-3x+2=0`
`=> x^2 -2x-x+2=0`
`=> (x^2-2x) -(x-2)=0`
`=> x(x-2)-(x-2)=0`
`=>(x-2)(x-1)=0`
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy \(x\in\left\{2;1\right\}\)
__
`F(x)=4x^2-4x+1`
`-> 4x^2-4x+1=0`
`=> 4x^2 -2x-2x+1=0`
`=> (4x^2-2x)-(2x-1)=0`
`=> 2x(2x-1)-(2x-1)=0`
`=> (2x-1)(2x-1)=0`
`=>(2x-1)^2=0`
`=>2x-1=0`
`=>2x=1`
`=>x=1/2`
Vậy \(x\in\left\{\dfrac{1}{2}\right\}\)
Hoặc
`->4x^2-4x+1=0`
`=> (2x-1)^2=0`
`=> 2x-1=0`
`=>2x=1`
`=>x=1/2`
Vậy \(x\in\left\{\dfrac{1}{2}\right\}\)
a) => 3x + 1 \(\ge\) 0 => 3x \(\ge\) -1 => x \(\ge\) -1/3
=> x + 1 \(\ge\) 2/3 > 0 và x + 2 \(\ge\) 5/3> 0
=> |x + 1| = x+1 và |x + 2| = x+2
Khi đó , ta có: x + 1 + x + 2 = 3x + 1
=> 2x - 3x = -2 => x = 2 ( Thỏa mãn)
Vậy x = 2
b) => 3 - 3x - 2 = |5/2 - x|
=> |5/2 - x| = 1 - 3x
=> 1 - 3x \(\ge\) 0 => -3x \(\ge\) -1 => - x \(\ge\) -1/3 => 5/2 - x \(\ge\) 5/2 -1/3 = 13/6 > 0
=> |5/2 - x| = 5/2 - x
Khi đó, ta có: 5/2 - x = 1 - 3x => 5/2 - 1 = x - 3x => 3/2 = -2x => x = -3/4 ( Thỏa mãn)
Vậy x = -3/4
Điều kiện 3x>0 => x>0
=> x+0,5 >0 và x+2>0
=> phương trình có dạng : x+0.5 + x+2=3x => x=2,5 (thỏa mãn)