Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x^2+y^2;x^2-y^2=x^2.y^2\) tỉ lệ nghịch với \(\frac{1}{25};\frac{1}{7};\frac{1}{256}\)( bài cho )
\(\Rightarrow\frac{x^2+y^2}{25}=\frac{x^2-y^2}{7}=\frac{x^2\cdot y^2}{256}\)
Ta có : \(\frac{x^2+y^2}{25}=\frac{x^2-y^2}{7}\)
\(\Rightarrow7\left(x^2+y^2\right)=25\left(x^2-y^2\right)\)
\(\Leftrightarrow7x^2+7y^2=25x^2-25y^2\)
\(\Leftrightarrow7x^2-25x^2=-25y^2-7y^2\)
\(\Leftrightarrow-18x^2=-32y^2\)
\(\Leftrightarrow9x^2=16y^2\)
\(\Leftrightarrow x^2=\frac{16}{9}y^2\)
Mà \(\frac{x^2-y^2}{7}=\frac{x^2.y^2}{256}\)
\(\Rightarrow\frac{\frac{16}{9}y^2-y^2}{7}=\frac{\frac{16}{9}y^2\cdot y^2}{256}\)
... Em tính ra thì tìm được \(\orbr{\begin{cases}y=4\\y=-4\end{cases}}\)
Sau đó em thử từng trường hợp:
Với y=4 thay vào biểu thức này : \(\frac{x^2+y^2}{25}=\frac{x^2-y^2}{7}\)tìm được x
Với y =-4 tương tự.
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\)
Dễ thấy: \(\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\ne0\Rightarrow x+2004=0\Leftrightarrow x=-2014\)
a)\(-\frac{2}{5}+\frac{2}{3}x+\frac{1}{6}x=-\frac{4}{5}\Leftrightarrow\frac{5}{6}x=-\frac{2}{5}\Leftrightarrow x=-\frac{12}{25}\)
Vậy nghiệm là x = -12/25
b)\(\frac{3}{2}x-\frac{2}{5}-\frac{2}{3}x=-\frac{4}{15}\Leftrightarrow\frac{5}{6}x=\frac{2}{15}\Leftrightarrow x=\frac{4}{25}\)
Vậy nghiệm là x = 4/25
c)\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\right)\)\(\Leftrightarrow x=-1\)
Vậy nghiệm là x = -1
\(-4\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{6}\right)\le x\le-\frac{2}{3}.\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
\(\Rightarrow-\frac{13}{3}.\left(\frac{3}{6}-\frac{1}{6}\right)\le x\le-\frac{2}{3}.\left(\frac{4}{12}-\frac{6}{12}-\frac{9}{12}\right)\)
\(\Rightarrow-\frac{13}{3}.\frac{2}{6}\le x\le-\frac{2}{3}.\frac{-11}{12}\)
\(\Rightarrow\frac{-13}{9}\le x\le\frac{11}{18}\)
\(\Rightarrow\frac{-26}{18}\le x\le\frac{11}{18}\)
=> -1,44444444444........... ≤ x ≤ 0,6111111111...........
Mà x ∈ Z
=> x ∈ { -1 ; 0 }
\(\frac{x-1}{2005}+\frac{x-2}{2004}-\frac{x-3}{2003}=\frac{x-4}{2002}\)
=>\(\frac{x-1}{2005}+\frac{x-2}{2004}-\frac{x-3}{2003}-\frac{x-4}{2004}=0\)
=>\(\left(\frac{x-1}{2005}-1\right)+\left(\frac{x-2}{2004}-1\right)-\left(\frac{x-3}{2003}-1\right)-\left(\frac{x-4}{2002}-1\right)=0\)
=>\(\frac{x-1-2005}{2005}+\frac{x-2-2004}{2004}-\frac{x-3-2003}{2003}-\frac{x-4-2002}{2002}=0\)
=>\(\frac{x-2006}{2005}+\frac{x-2006}{2004}-\frac{x-2006}{2003}-\frac{x-2006}{2002}=0\)
=>\(\left(x-2006\right)\left(\frac{1}{2005}+\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\right)=0\)
Mà \(\frac{1}{2005}+\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\ne0\)
=> x - 2006 = 0 => x = 2006
a, \(\left|x-\frac{-3}{2}\right|=\frac{1}{4}\Rightarrow\left|x+\frac{3}{2}\right|=\frac{1}{4}\Rightarrow\orbr{\begin{cases}x+\frac{3}{2}=\frac{1}{4}\\x+\frac{3}{2}=-\frac{1}{4}\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{5}{4}\\x=\frac{-7}{4}\end{cases}}}\)
b, \(\left|x-3,5\right|-\frac{1}{2}=0\Rightarrow\left|x-3,5\right|=\frac{1}{2}\) đến đây tương tự a
\(\left(x-\frac{1}{2}\right)^2=\frac{4}{25}\)
TH1 : \(x-\frac{1}{2}=\frac{2}{5}\Leftrightarrow x=\frac{2}{5}+\frac{1}{2}=\frac{4}{10}+\frac{5}{10}=\frac{9}{10}\)
TH2 : \(x-\frac{1}{2}=-\frac{2}{5}\Leftrightarrow x=-\frac{2}{5}+\frac{1}{2}=\frac{-4}{10}+\frac{5}{10}=\frac{1}{10}\)