
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(x^2-3=0\)
\(\Leftrightarrow x^2=3\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=-3\end{array}\right.\)
\(\left(x+2\right).\left(x^2-2x+4\right)+x.\left(5-x\right).\left(x-5\right)=-17\)
\(\Leftrightarrow x^3-8+x.-\left(x-5\right).\left(x+5\right)=-17\)
\(\Leftrightarrow x^3-8-x.\left(x^2-25\right)=-17\)
\(\Leftrightarrow x^3-8-x^3+25x=-17\)
\(\Leftrightarrow-8+25x=-17\)
\(\Leftrightarrow25x=-9\)
\(\Leftrightarrow x=-\frac{9}{25}\)
\(x^3-3x^2-3x+1=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Leftrightarrow x=1\)

\(3-\left(x-1\right)=2-2\left(x-3\right)\)
\(3-x+1=2-2x+6\)
\(4-x=8-2x\)
\(4-x-8+2x=0\)
\(x-4=0\)
\(x=4\)
3-(x-1)=2-2(x-3)=>3-2=x-1-2(x-3)=>1=x-1-2x+6
=>1=-x+5=>-x=1-5=-4=>x=4
Chúc bạn học tốt nhớ k cho mik nha.

a/ => 4x2 - 4x + 1 + 4x2 + 4x + 1 = 16
=> 8x2 = 14
=> x2 = 14/8
=> x = \(\frac{\sqrt{7}}{2}\) hoặc x = \(-\frac{\sqrt{7}}{2}\)
b/ => 6x2 - (6x2 - 11x - 10) = 17
=> 6x2 - 6x2 + 11x + 10 = 17
=> 11x = 7
=> x = 7/11
c/ => 2x(x + 5) - x2 - 5x = 0
=> 2x(x + 5) - x(x + 5) = 0
=> (x + 5)(2x - x) = 0
=> x(x + 5) = 0
=> x = 0
hoặc x + 5 = 0 => x = -5
Vậy x = 0 ; x = -5
d/ \(x^2+\frac{1}{x^2}+2x+\frac{2}{x}=-3\)
đề là như vầy hả

a/ \(\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=17\)
<=> \(x^3-3x^2+3x-1+\left(2-x\right)\left(x+2\right)^2+3x^2+6x=17\)
<=> \(x^3+9x-1+2\left(x+2\right)^2-x\left(x+2\right)^2=17\)
<=> \(x^3+9x-1+2\left(x^2+2x+1\right)-x\left(x^2+2x+1\right)=17\)
<=> \(x^3+9x-1+2x^2+4x+2-x^3-2x^2-x=17\)
<=> \(12x+1=17\)
<=> \(12x=16\)
<=> \(x=\frac{4}{3}\)
b/ \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)
<=> \(\left(x+2\right)\left(x-2\right)^2-x\left(x^2-2\right)=15\)
<=> \(x\left(x-2\right)^2-x\left(x^2-2\right)+2\left(x-2\right)^2=15\)
<=> \(x\left(x^2-2x+1\right)-x\left(x^2-2\right)+2\left(x-2\right)^2=15\)
<=> \(x\left[x^2-2x+1-\left(x^2-2\right)\right]+2\left(x-2\right)^2=15\)
<=> \(x\left(x^2-2x+1-x^2+2\right)+2\left(x-2\right)^2=15\)
<=> \(x\left(3-2x\right)+2\left(x^2-2x+1\right)=15\)
<=> \(3x-2x^2+2x^2-4x+2=15\)
<=> \(2-x=15\)
<=> \(x=-13\)

a) (x - 2)2 - (x - 3)(x + 3) = 17
⇔ (x2 - 4x + 4) - (x2 - 9) = 17
⇔ x2 - 4x + 4 - x2 + 9 = 17
⇔ 13 - 4x = 17
⇔ - 4x = -4
⇔ x = 1
b) 4(x - 3)2 - (2x - 1)(2x + 1) = 10
⇔ [2(x - 3)]2 - (4x2 - 1) = 10
⇔ (2x - 6)2 - 4x2 + 1 = 10
⇔ 4x2 - 24x + 36 - 4x2 + 1 = 10
⇔ - 24x = -27
⇔ x = \(\dfrac{9}{8}\)
c) (x - 4)2 - (x - 2)(x + 2) = 36
⇔ x2 - 8x + 16 - x2 + 4 = 36
⇔ -8x = 16
⇔ x = -2
d) (2x + 3)2 - (2x - 1)(2x + 1) = 10
⇔ 4x2 + 12x + 9 - 4x2 + 1 = 10
⇔ 12x = 0
⇔ x = 0
Tìm x ,biết :
a, \(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=17\)
\(\Rightarrow x^2-4x+4-x^2+9=17\)
\(\Rightarrow-4x+13=17\)
\(\Rightarrow-4x=4\)
\(\Rightarrow x=-1\)
b,\(4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
\(\Rightarrow4\left(x^2-6x+9\right)-4x^2+1=10\)
\(\Rightarrow4x^2-24x+36-4x^2+1=10\)
⇒ \(-24x+37=10\)
\(\Rightarrow-24x=-27\)
\(\Rightarrow x=\dfrac{-27}{-24}=\dfrac{9}{8}\)
c,\(\left(x-4\right)^2-\left(x-2\right)\left(x+2\right)=36\)
⇒ \(x^2-8x+16-x^2+4=36\)
⇒ \(-8x+20=36\)
⇒ \(-8x=16\Rightarrow x=-2\)
d,\(\left(2x+3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
\(\Rightarrow4x^2+12x+9-4x^2+1=10\)
\(\Rightarrow12x+10=10\)
\(\Rightarrow12x=0\Rightarrow x=0\)

\(\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=1\)
\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\)
\(\Leftrightarrow9x+7=17\)
\(\Leftrightarrow9x=10\)
\(\Leftrightarrow x=\frac{10}{9}\)

B = 2\(x^2\) - 4\(x\) - 8
B = 2(\(x^2\) - 2\(x\) + 4) - 16
B = 2(\(x-2\))2 - 16
Vì (\(x-2\))2 ≥ 0 ∀ \(x\) ⇒ 2(\(x-2\))2 ≥ 0 ∀ \(x\)
⇒ 2(\(x-2\))2 - 16 ≥ -16 ∀ \(x\)
Dấu bằng xảy ra khi (\(x-2\))2 = 0 ⇒ \(x-2=0\) ⇒ \(x=2\)
Vậy Bmin = -16 khi \(x=2\)
Tìm min của C biết:
C = \(x^2\) - 2\(xy\) + 2y2 + 2\(x\) - 10y + 17
C = (\(x^2\) - 2\(xy\) + y2) + 2(\(x\) - y) + y2 - 8y + 16 + 1
C = (\(x\) - y)2 + 2(\(x\) - y) + 1 + (y2 - 8y + 16)
C = (\(x-y+1\))2 + (y - 4)2
Vì (\(x\) - y + 1)2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0 ∀ y
Dấu bằng xảy ra khi: \(\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x-y+1=0\\y=4\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x-4+1=0\\y=4\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=-1+4\\y=4\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
Vậy Cmin = 0 khi (\(x;y\)) = (3; 4)
12 doc tieng anh
) (x+3)^2-(x+2)(x-2)=4x+17
⇔ X² + 6X +9 - ( X² -4) = 4X +17
⇔ X² + 6X +9 - X² + 4 - 4X -17 =0
⇔ 2X -4 =0
⇔2X =4
⇔ X = 2
c. 3X² +7X =10
⇔ 3X² +7X -10 =0
⇔ (X -1) .(3X +10 ) =0
⇔ X -1 = 0 hoặc 3X + 10 =0
⇔ X =1 hoặc X =-10/3