
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{1}{3}-\left(\frac{2}{3}-x+\frac{5}{4}\right)=\frac{7}{12}-\left(\frac{5}{2}-\frac{13}{6}\right)\)
\(\frac{1}{3}-\left(\frac{2}{3}-x+\frac{5}{4}\right)=\frac{7}{12}-\frac{1}{3}\)
\(\frac{1}{3}-\left(\frac{2}{3}-x+\frac{5}{4}\right)=\frac{1}{4}\)
\(\frac{2}{3}-x+\frac{5}{4}=\frac{1}{3}-\frac{1}{4}\)
\(\frac{2}{3}-x+\frac{5}{4}=\frac{1}{12}\)
\(\frac{2}{3}-x=\frac{1}{12}-\frac{5}{4}\)
\(\frac{2}{3}-x=-\frac{7}{6}\)
\(x=\frac{2}{3}-\left(-\frac{7}{6}\right)\)
\(x=\frac{2}{3}+\frac{7}{6}\)
\(x=\frac{11}{6}\)

X+1/3 = 3/ 4
X = 3/4 -1/3
X = 5/12
X - 2/5 = 5/7
X = 5/7 -2/5
X = 9/35
-X - 2/3 = 6/7
-X = 6/7 - 2/3
-X = 4/21
4/7 - X = 1/3
X = 4/7 - 1/3
X = 5/21
k mk nha bn!!!! thank bn nhìu nha
x + 1/3 = 3/4
x = 3/4 - 1/3
x = 5/12
x-2/4=5/7
x=5/7+2/5=
x=39/35
tườn tự nhé
giúp tớ nhé
tớ bị trừ 590 điểm
cảm ơn trước

\(-\frac{4}{9}+\left(-\frac{5}{6}\right)-\frac{17}{4}=-\frac{199}{36}\)
\(-x-\frac{2}{3}=-\frac{6}{7}\)
\(\Rightarrow-x=-\frac{6}{7}+\frac{2}{3}\)
\(\Rightarrow-x=-\frac{4}{21}\)
\(\Rightarrow x=\frac{4}{21}\)
\(\frac{4}{7}-x=\frac{1}{3}\)
\(\Rightarrow x=\frac{4}{7}-\frac{1}{3}\)
\(\Rightarrow x=\frac{5}{21}\)
1. -4/9 + ( -5/6) -17/4
= -23/18 - 17/4 = -199/36
2.tìm x
a. -x - 2/3 = -6/7
-x = -6/7 +2/3
-x = -4/21
x=4/21
b. 4/7 - x = 1/3
x = 4/7 - 1/3
x =5/21

1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.

a)x=\(\frac{5}{12}\)
b)x=\(\frac{39}{35}\)
c)-x=-\(\frac{4}{21}\)
x=\(\frac{4}{21}\)

\(3.\left(\frac{1}{2}-x\right)+\frac{1}{3}=\frac{7}{6}-x\)
\(\frac{3}{2}-3x+\frac{1}{3}=\frac{7}{6}-x\)
\(\frac{11}{6}-3x=\frac{7}{6}-x\)
\(\frac{11}{6}-\frac{7}{6}=3x-x\)
\(\frac{4}{6}=2x\)
\(x=\frac{4}{6}:2\)
\(x=\frac{1}{3}\)
\(3.\left(\frac{1}{2}-x\right)+\frac{1}{3}=\frac{7}{6}-x\)
\(\Leftrightarrow\frac{3}{2}-3x+\frac{1}{3}=\frac{7}{6}-x\)
\(\Leftrightarrow-3x+x=\frac{7}{6}-\frac{3}{2}-\frac{1}{3}\)
\(\Leftrightarrow x\left(-3+1\right)=\frac{-2}{3}\)
\(\Leftrightarrow x.\left(-2\right)=\frac{-2}{3}\)
\(\Leftrightarrow x=\frac{-2}{3}:\left(-2\right)\)
\(\Leftrightarrow x=\frac{1}{3}\)

ta có h(x)=\(\left(-8x^3+8x^3\right)+\left(3x^7-x^7-2x^7\right)+x^4-36+49\)
(=)h(x)=\(x^4+13\)
=>\(x^4+13=1\left(=\right)x^4=-12\)=> ko tồn tại x thỏa mãn
ta có \(x^4\ge0\)=>\(x^4+13\ge13>0\)
Vậy h(x)luôn nhận giá trị dương
ta có :
\(-x-\frac{2}{3}=-\frac{6}{7}\)
\(\Leftrightarrow-x=\frac{2}{3}-\frac{6}{7}=\frac{14-18}{21}=-\frac{4}{21}\)
\(\Leftrightarrow x=\frac{4}{21}\)