Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{3}=\frac{y}{5}\)và x + y = 16
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)
\(\frac{x}{3}=2\Rightarrow x=2.3=6\)
\(\frac{y}{5}=2\Rightarrow y=2.5=10\)
Vậy...
A) \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2.4}=\frac{y}{3.4}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{3.4}=\frac{z}{3.5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ 1 và 2
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)s
Áp dụng tính chất dãy tỉ số bằng nhau
=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\frac{x}{8}=2\Rightarrow x=16\)
\(\frac{y}{12}=2\Rightarrow y=24\)
\(\frac{z}{15}=2\Rightarrow z=30\)
B) Đặt \(\frac{x}{2}=\frac{y}{5}=k\)
=> \(\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)
xy = 10
=> 2k . 5k = 10
=> 10 . k2 = 10
=> k2 = 1
=> \(\hept{\begin{cases}k=-1\\k=1\end{cases}}\)
=> Với \(\hept{\begin{cases}k=-1\Rightarrow\hept{\begin{cases}x=-2\\y=-5\end{cases}}\\k=1\Rightarrow\hept{\begin{cases}x=2\\y=5\hept{\begin{cases}\\\end{cases}}\end{cases}}\end{cases}}\)
Ta có: x/2=y/5
=>x.5=y.2
=>x.5.y=y.2.y
=>xy.5=y2.2
mà xy=10
=>10.5=y2.2
=>50=y2.2
=>y2=25=52=(-5)2
=>y=5,-5
Xét y=5=>x=10:5=2
Xét y=-5=>x=10:(-5)=-2
Vậy x=-2,y=-5
x=2,y=5
Đặt \(\frac{x}{2}=\frac{y}{5}=t\Rightarrow x=2t;y=5t\)
Thay vào ta có :
x.y = 10 =>2t.5t = 10
=> 10t^2 = 10
=> t^2 = 1
=> t = 1 hoặc t = -1
(+) với t = 1 => x = 2.1 = 2 ; y = 5
(+) với t = -1 => x = -2 và y = -5
Có \(\frac{x}{y}=\frac{7}{10}\Rightarrow\frac{x}{7}=\frac{y}{10}\) . Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{7}=\frac{y}{10}=\frac{x+y}{7+10}=\frac{34}{17}=2\) . Từ đó ta suy ra được
\(\Rightarrow x=2.7=14\) \(\Rightarrow y=2.10=20\)
=> x=2k và y=5k
=> x.y=2k.5k=10k2=10
=>k2=1
=>TH1: k=1
=>x=2.1=2 và y=1.5=5
=>TH2: k=-1
=>x=(-1).2=-2 và y=(-1).5=-5
Vậy x=2 thì y=5; x=-2 thì y=-5
=> x = 2k và y = 5k
Từ xy = 10 suy ra
2k.5k = 10 => 10k2 = 10 => k = ±1
- Với k = 1 ta được x = 2; y = 5
Toán 7 hả ?
Đặt \(\frac{x}{2}=\frac{y}{5}=k\)
\(\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)
Theo bài ra ta có:
xy=2k.5k=10
=> 10k2=10
=> k=\(\pm\)1
Với k = 1 suy ra
\(\hept{\begin{cases}x=2\\y=5\end{cases}}\)
Với k = -1 suy ra
\(\hept{\begin{cases}x=-2\\y=-5\end{cases}}\)
Đáp số: ...
a)x+y=25
x=25-y
thay x=25-y vào x-y=13 ta được:
25-y-y=13
25-2y=13
-2y=-12
y=6
=>x=25-6
x=19
vậy x=19;y=6
b) x:y=-2:5
=>\(\frac{x}{-2}=\frac{y}{5}\)
đặt \(\frac{x}{-2}=\frac{y}{5}=k\Rightarrow x=-2k;y=5k\)
thay x=-2k;y=5k vào xy=-10 ta được:
-2k.5k=-10
-10k2=-10
k2=1
=>k=1 hoặc k=-1
với k=1 thì
x=-2.1=-2
y=5.1=5
với k=-1 thì:
x=-2.(-1)=2
y=5.(-1)=-5
Theo đề, ta có: \(\frac{x}{2}=\frac{y}{-5}\)và \(x-y=-7\)
Theo TC dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
\(\Leftrightarrow\hept{\begin{cases}x=-1.2=-2\\y=-1.-5=5\end{cases}}\)
\(dat:\frac{x}{2}=\frac{y}{5}=k\)
x=2k ; y=5k
x.y=10k2
10 = 10k2
k2 = 1
k = +-1
Voi : k=1 = > x=1.2=2 ; y=5.1=5
voi : k=-1 => x=-1.2=-2 ; y=-1.5=-5
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{2}=\frac{4y}{12};\frac{3y}{12}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Ap dung tinh chat day ti so bang nhau ta co :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
Suy ra : \(\frac{x}{8}=2\Rightarrow x=16;\frac{y}{12}=2\Rightarrow y=2.12=24;\frac{z}{15}=2\Rightarrow z=2.15=30\)
nhieu qua lam ko het
Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\)
thay x=2k ; y=5k vào xy=10 ta được:
2k.5k=10
10k=10
k=1
=>k=1 hoặc k=-1
với k=1 thì
x=2.1=2
y=5.1=5
với k=-1 thì:
x=2.(-1)=-2
y=5.(-1)=-5