Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\)\(\Leftrightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{12}\Leftrightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
\(\Rightarrow\frac{x-y+z}{10-15+12}=-\frac{49}{7}=-7\)
\(\Rightarrow x=-7.10=-70\)
\(y=-7.15=-105\)
\(z=-7.12=-84\)
\(\frac{x}{2}=\frac{y}{4}\Rightarrow\frac{x}{10}=\frac{y}{20}\) (*)
\(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\)(**)
Từ (*) và (**) \(\Rightarrow\frac{x}{10}=\frac{y}{20}=\frac{z}{24}=k\)\(\Rightarrow x=10k\); \(y=20k\); \(z=24k\)
Ta có : \(x+y+z=486\Rightarrow10k+20k+24k=486\Rightarrow54k=486\Rightarrow k=\frac{486}{54}=9\)
Do đó : \(\frac{x}{10}=9\Rightarrow x=9.10=90\)
\(\frac{y}{20}=9\Rightarrow y=9.20=180\)
\(\frac{z}{24}=9\Rightarrow z=9.24=216\)
Vậy .....
\(\frac{x}{2}\)= \(\frac{y}{4}\); \(\frac{y}{5}\)= \(\frac{z}{6}\) và x+y+z=486
\(\Rightarrow\)\(\frac{x}{10}\)= \(\frac{y}{20}\); \(\frac{y}{20}\)= \(\frac{z}{24}\)
\(\Rightarrow\)\(\frac{x}{10}\)= \(\frac{y}{20}\)= \(\frac{z}{24}\)và x+y+z=486
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}\)= \(\frac{y}{20}\)= \(\frac{z}{24}\)=\(\frac{x+y+Z}{10+20+24}\)= \(\frac{486}{54}\)= 9
Suy ra: \(\frac{x}{10}\)= 9\(\Rightarrow\)x= 9.10=90
\(\frac{y}{20}\)= 9\(\Rightarrow\)y= 20.9= 180
\(\frac{z}{24}\)= 9\(\Rightarrow\)z= 24.9= 216
Vậy x= 90; y=180; z= 216
x/2 = y/3 => x/10 = y/15 ;
y/5 = z/4 => y/15 = z/12
=> x/10 = y/15 = z/12
Áp dụng tính chất dãy tí số bằng nhau ta có:
x/10 = y/15 = z/12 = z-y+x/12-15+10 = 147/7 = 21
x/10 = 21 ; x = 210
y/15 = 21 ; y = 315
z/12 = 21 ; z = 252
Vậy x = 210 ; y= 315 ; z = 252
\(\frac{x}{2}\)=\(\frac{y}{3}\)=>\(\frac{x}{10}\)=\(\frac{y}{15}\)
\(\frac{y}{5}\)=\(\frac{z}{4}\)=>\(\frac{y}{15}\)=\(\frac{z}{12}\)
Ta có:\(\frac{z}{12}\)=\(\frac{y}{15}\)=\(\frac{x}{10}\) và z-y+x=147
Áp dụng tính chất của dãy tỉ số bằng nhau:
Ta được: \(\frac{z}{12}\)=\(\frac{y}{15}\)=\(\frac{x}{10}\)=\(\frac{z-y+x}{12-15+10}\)=\(\frac{147}{7}\)=21
Vì \(\frac{z}{12}\)=21 => z=12.21=252
\(\frac{y}{15}\)=21 => y=15.21=315
\(\frac{x}{10}\)=21 => x=10.21=210
Ta có:
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta được :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\Rightarrow x=16;y=24;z=30\)
Vậy x= 16 ; y = 24 ; z= 30
a)ta có xy=7*9=7*3*3
vậy x =9;21 , y=7;3
b) xy=-2*5
mà x<0<y
nên x=-2 ,y=5
c)x-y=5 hay x=y+5
\(\frac{y+5+4}{y-5}=\frac{4}{3}\Rightarrow3y+27=4y-20\Rightarrow y=47\Rightarrow x=52\)
Sửa đề: 3(x-1)=2(y+2)
Ta có: 3(x-1)=2(y+2)
\(\Leftrightarrow6\left(x-1\right)=4\left(y+2\right)\)
mà 4(y+2)=5(z-3)
nên \(6\left(x-1\right)=4\left(y+2\right)=5\left(z-3\right)\)
\(\Leftrightarrow\dfrac{x-1}{\dfrac{1}{6}}=\dfrac{y+2}{\dfrac{1}{4}}=\dfrac{z-3}{\dfrac{1}{5}}\)
\(\Leftrightarrow\dfrac{2x-2}{\dfrac{1}{3}}=\dfrac{3y+6}{\dfrac{3}{4}}=\dfrac{4z-12}{\dfrac{4}{5}}\)
mà 2x+3y-4z=205
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-2}{\dfrac{1}{3}}=\dfrac{3y+6}{\dfrac{3}{4}}=\dfrac{4z-12}{\dfrac{4}{5}}=\dfrac{2x-2+3y+6-4z+12}{\dfrac{1}{3}+\dfrac{3}{4}-\dfrac{4}{5}}=\dfrac{205+16}{\dfrac{17}{60}}=780\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{2x-2}{\dfrac{1}{3}}=780\\\dfrac{3y+6}{\dfrac{3}{4}}=780\\\dfrac{4z-12}{\dfrac{4}{5}}=780\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-2=260\\3y+6=585\\4z-12=624\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=262\\3y=579\\4z=636\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=131\\y=193\\z=159\end{matrix}\right.\)
Vậy: (x,y,z)=(131;193;159)
giải chi tiết giúp mk ai nhanh nhất mk tích cho