Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+12=4\sqrt{x}-6\sqrt{y-1}\) (ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\y\ge1\end{matrix}\right.\))
\(\Leftrightarrow\left(x-4\sqrt{x}+4\right)+\left[\left(y-1\right)+6\sqrt{y-1}+9\right]=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\left(\sqrt{y-1}+3\right)^2=0\)
Vì \(\left\{{}\begin{matrix}\left(\sqrt{x}-2\right)^2\ge0\\\left(\sqrt{y-1}+3\right)^2\ge9\end{matrix}\right.\Rightarrow VT\ge9\)
Vậy pt vô nghiệm.
Đk: \(\left\{{}\begin{matrix}x\ge0\\y\ge1\end{matrix}\right.\)
đặt \(\left\{{}\begin{matrix}a=\sqrt{x}\\b=\sqrt{y-1}\end{matrix}\right.\) (a,b >/ 0)
được: \(a^2+b^2+13=4a-6b\Leftrightarrow\left(a-2\right)^2+\left(b+3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-3\left(L\right)\end{matrix}\right.\)
ptvn
hơi kỳ!
Điều kiện: x \(\ge\)0; y \(\ge\) 1
PT <=> \(x-4\sqrt{x}+y-6\sqrt{y-1}+12=0\)
<=> \(\left(x-4\sqrt{x}+4\right)+\left(\left(y-1\right)-6\sqrt{y-1}+9\right)=0\)
<=> \(\left(\sqrt{x}-2\right)^2+\left(\sqrt{y-1}-3\right)^2=0\)
<=> \(\left(\sqrt{x}-2\right)^2=\left(\sqrt{y-1}-3\right)^2=0\) (Vì \(\left(\sqrt{x}-2\right)^2;\left(\sqrt{y-1}-3\right)^2\ge0\) với mọi x >=0 và y>= 1 )
<=> \(\sqrt{x}-2=0;\sqrt{y-1}-3=0\) <=> x= 4; y - 1 =9 <=> x =4 và y = 10 (TMĐK)
Vậy...
hình như...
b) \(x+y+z+8=2\sqrt{x-3}+4\sqrt{y-3}+6\sqrt{z-3}\)
\(\Leftrightarrow x-3+y-3+z-3+17=2\sqrt{x-3}+4\sqrt{y-3}+6\sqrt{z-3}\)
\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)+3=0\)
\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-3}-3\right)^2+3=0\) (vô nghiệm, VT >/3)
Kl: ptvn
a) ĐKXĐ: \(x,y\ge0\)
\(M=\dfrac{x\sqrt{y}-\sqrt{y}-y\sqrt{x}+\sqrt{x}}{1+\sqrt{xy}}=\dfrac{x\sqrt{y}-y\sqrt{x}+\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\)
\(=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)+\left(\sqrt{x}-\sqrt{y}\right)}{1+\sqrt{xy}}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(1+\sqrt{xy}\right)}{1+\sqrt{xy}}=\sqrt{x}-\sqrt{y}\)
b) \(x=\left(1-\sqrt{3}\right)^2\Rightarrow\sqrt{x}=\sqrt{\left(1-\sqrt{3}\right)^2}=\left|1-\sqrt{3}\right|=\sqrt{3}-1\)
\(y=3-\sqrt{8}\Rightarrow\sqrt{y}=\sqrt{3-\sqrt{8}}=\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|=\sqrt{2}-1\)
\(\Rightarrow M=\left(\sqrt{3}-1\right)-\left(\sqrt{2}-1\right)=\sqrt{3}-\sqrt{2}\)