Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)a)
x/3=y/4=>x/15=y/20
y/5=z/7=>y/20=z/28
=>x/15=y/20=z/18
Áp dụng tính chất dãy tỉ số bằng nhau ta có
x/15=y/20=z/28=2x+3y-z/30+60-28=372/62=6
=>x=90
y=120
z=168
b)
2x=3y=5z
2x=3y=>x/3=y/2=>x/15=y/10
3y=5z=>y/5=z/3=>y/10=z/6
Áp dụng tính chất dãy tỉ số bằng nhau ta có
x/15=y/10=z/6=x+y-z/15+10-6=95/19=5
=>x=75
y=50
z=30
a) Ta co :x/3=y/4 suy ra x/15=y/20 (1)
y/5=z/7 suy ra y/20=z/28 (2)
Tu (1) va (2) suy ra y/20=x/15=z/28
còn lại tự làm nhé dễ rùi
b)Ta co : 2x=3y=5z suy ra x phan 1/2=y phan 1/3 = z phan 1/5
de rui tu lam nha
1. Ta có: \(\dfrac{x}{-7}=\dfrac{y}{4}\Rightarrow\dfrac{2x}{-14}=\dfrac{3y}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-3y}{-14-12}=\dfrac{-78}{-26}=3\)
=> \(\left\{{}\begin{matrix}x=-21\\y=12\end{matrix}\right.\)
2. Ta có:
- \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
- \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)
=> \(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)
=> \(\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)
7.( 2x - y ) =2y
<=> 14x -7y = 2y
<=> 14x = 9y
<=> x/y = 9/14
Vì 2x + y = 7 => y = 7 - 2x
Thay y = 7 - 2x vào biểu thức x-2y ta có:
x-2y=1
x-2(7-2x)=1
x-(14-4x)=1
x-14+4x=1
5x - 14=1
5x = 1 + 14
5x = 15
x =15 : 5
x = 3
Thay x = 3 vào biểu thức 2x+y ta có:
2x+y=7
2.3+y=7
6+y=7
y=7-6
y=1
Vậy x=3 ; y=1
\(\frac{x}{y}=\frac{7}{13}\Rightarrow\frac{x}{7}=\frac{y}{13}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=-\frac{60}{20}=-3\)
Suy ra : \(\frac{x}{7}=-3\Rightarrow x=-3.7=-21\)
\(\frac{y}{13}=-3\Rightarrow y=-3.13=-39\)
vay : x=-21 va y=-39
------------------------------------------------
\(\frac{x}{16}=\frac{y}{21}\Rightarrow\frac{2x}{32}=\frac{y}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{32}=\frac{y}{21}=\frac{2x-y}{32-21}=\frac{34}{11}=?\)
sai de ko
Bài 2:
\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{c+a+c-a}=\dfrac{a}{c}\) (T/c dãy tỷ số = nhau)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a}{c}\Rightarrow c\left(a+b\right)=a\left(c+a\right)\)
\(\Rightarrow ac+bc=ac+a^2\Rightarrow a^2=bc\)