Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 nha !
Gọi số tự nhiên lẻ cần tìm có dạng \(\overline{xy}\) (\(\overline{xy}\) >0)
\(\overline{xy}=10x+y\)
Mà \(\overline{xy}⋮5\)
Nên \(\left(10x+y\right)⋮5\)
Do 10x chia hết cho 5
=> để số đó chia hết cho 5 thì y chia hết cho 5
\(\Rightarrow y\in B\left(5\right)\)
\(\Rightarrow y\in\left\{0,5,15,...\right\}\)
Vì y là 1 số và \(\overline{xy}\) lẻ
Nên y = 5
Ta có:
\(\overline{xy}-x=68\)
\(10x+y-x=68\)
\(9x+5=68\)
\(9x=63\Leftrightarrow x=7\)
Vậy số cần tìm là 75
Bài 3:
Nửa chu vi là: 320:2 = 160 (m)
Gọi chiều dài là x (m)
=> Chiều rộng là: 160 - x
Theo đề ra ta có pt:
\(\left(x+10\right)\left(180-x\right)-2700=x\left(160-x\right)\)
\(\Leftrightarrow180x-x^2+1800-10x-2700=160x-x^2\)
\(\Leftrightarrow170x-900-x^2=160x-x^2\)
\(\Leftrightarrow10x-900=0\)
\(\Leftrightarrow x=90\)
Vậy chiều dài là 90 (m)
Chiều rộng là: 160 - 90 = 70 (m)
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
\(x^2-x-1=x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{5}{4}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2-\frac{5}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\)
Khai căn hai vế ra ta được
\(x-\frac{1}{2}=\frac{\sqrt{5}}{2}\)
\(\Leftrightarrow x=\frac{\sqrt{5}}{2}+\frac{1}{2}\)
\(\Leftrightarrow x=1,618033989\)