K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: cos(3x-45 độ)=0

=>3x-45 độ=90 độ+k*180 độ

=>3x=135 độ+k*180 độ

=>x=45 độ+k*60 độ

=45 độ-120 độ+(k+2)*60 độ

=-75 độ+z*60 độ

=>Chọn B

2;

tan(x-15 độ)=1

=>x-15 độ=45 độ+k*180 độ

=>x=60 độ+k*180 độ

=>Chọn C

3: 2*cos(4x-20 độ)=0

=>cos(4x-20 độ)=0

=>4x-20 độ=90 độ+k*180 độ

=>4x=110 độ+k*180 độ

=>x=27,5 độ+k*45 độ

=>Chọn C

29 tháng 7 2021

\(\left|cosx\right|=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{1}{2}\\cosx=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\x=\pm\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow x=\pm\dfrac{\pi}{3}+k2\pi\)

NV
29 tháng 7 2021

\(\left|cosx\right|=\dfrac{1}{2}\)

\(\Leftrightarrow cos^2x=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{1+cos2x}{2}=\dfrac{1}{4}\)

\(\Leftrightarrow cos2x=-\dfrac{1}{2}\)

\(\Rightarrow2x=\pm\dfrac{2\pi}{3}+k2\pi\)

\(\Rightarrow x=\pm\dfrac{\pi}{3}+k\pi\)

NV
14 tháng 8 2021

\(cos\left(x-\dfrac{\pi}{3}\right)=sin\left(2x+\dfrac{\pi}{2}\right)\)

\(\Leftrightarrow cos\left(x-\dfrac{\pi}{3}\right)=cos2x\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=x-\dfrac{\pi}{3}+k2\pi\\2x=\dfrac{\pi}{3}-x+l2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{3}+k2\pi\\x=\dfrac{\pi}{9}+l\dfrac{2\pi}{3}\end{matrix}\right.\)

Chỉ II đúng

NV
1 tháng 6 2021

1.

\(\Leftrightarrow1-2sin^2x+sinx+m=0\)

\(\Leftrightarrow2sin^2x-sinx-1=m\)

Đặt \(sinx=t\Rightarrow t\in\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)

Xét hàm \(f\left(t\right)=2t^2-t-1\) trên \(\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{4}\in\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)

\(f\left(-\dfrac{1}{2}\right)=0\) ; \(f\left(\dfrac{1}{4}\right)=-\dfrac{9}{8}\) ; \(f\left(\dfrac{\sqrt{2}}{2}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow-\dfrac{9}{8}\le f\left(t\right)\le0\Rightarrow-\dfrac{9}{8}\le m\le0\)

Có 2 giá trị nguyên của m (nếu đáp án là 3 thì đáp án sai)

NV
1 tháng 6 2021

2.

ĐKXĐ: \(sin2x\ne1\Rightarrow x\ne\dfrac{\pi}{4}\) (chỉ quan tâm trong khoảng xét)

Pt tương đương:

\(\left(tan^2x+cot^2x+2\right)-\left(tanx+cotx\right)-4=0\)

\(\Leftrightarrow\left(tanx+cotx\right)^2+\left(tanx+cotx\right)-4=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx+cotx=\dfrac{1+\sqrt{17}}{2}\\tanx+cotx=\dfrac{1-\sqrt{17}}{2}\left(loại\right)\end{matrix}\right.\)

Nghiệm xấu quá, kiểm tra lại đề chỗ \(-tanx+...-cotx\) có thể 1 trong 2 cái đằng trước phải là dấu "+"

y=sin x đồng biến trên \(\left(-\dfrac{\Omega}{2}+k2\Omega;\dfrac{\Omega}{2}+k2\Omega\right)\)

=>Hàm số y=sin x không thể đồng biến trên cả khoảng \(\left(0;\dfrac{5}{6}\Omega\right)\) được

=>Loại A

\(y=cosx\) đồng biến trên khoảng \(\left(-\Omega+k2\Omega;k2\Omega\right)\)

=>Hàm số y=cosx cũng không thể đồng biến trên khoảng \(\left(0;\dfrac{5}{6}\Omega\right)\)

=>Loại B

\(x\in\left(0;\dfrac{5}{6}\Omega\right)\)

=>\(x+\dfrac{\Omega}{3}\in\left(\dfrac{\Omega}{3};\dfrac{4}{3}\Omega\right)\)

=>\(y=sin\left(x+\dfrac{\Omega}{3}\right)\in\left[-\dfrac{\sqrt{3}}{2};\dfrac{\sqrt{3}}{2}\right]\)

=>Khi x tăng thì y chưa chắc tăng

=>Loại D

=>Chọn C 

Câu 48: B

Câu 44: D