Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x+10^0=-90^0+k360^0\)
\(\Leftrightarrow x=-100^0+k360^0\)
\(tan3x=tanx\)
Điều kiện: \(x \ne \dfrac{\pi }{6} + \dfrac{{k\pi }}{3},k \in Z\)
\( \Leftrightarrow \tan 3x - {\mathop{\rm tanx}\nolimits} = 0\\ \Leftrightarrow \dfrac{{\sin 2x}}{{\cos 3x.cosx}} = 0\\ \Leftrightarrow \sin 2x = 0\\ \Leftrightarrow 2x = k\pi \\ \Leftrightarrow x = \dfrac{{k\pi }}{2},k \in Z \)
Chọn A
1. T= \(\frac{\pi}{\left|a\right|}=\frac{\pi}{3}\)
2. \(T_1=\frac{2\pi}{2}=\pi\) ; \(T_2=\frac{2\pi}{\frac{1}{2}}=4\pi\)
=> \(T=BCNN\left(\pi;4\pi\right)=4\pi\)
3. \(\left[{}\begin{matrix}5x-45^o=30^o+k360^o\\5x-45^o=-30^o+k360^o\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=75^o+k360^o\\5x=15^o+k360^o\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=15^o+k72^o\\x=3^0+k72^o\end{matrix}\right.\) \(\left(k\in Z\right)\)
Cho k=-1 thì x= -57 độ or x= -69 độ nên lấy x= -57 độ là no âm lớn nhất => Chọn C
4. Có pt hoành độ giao điểm của 2 đths : sinx = sin3x
\(\Leftrightarrow\left[{}\begin{matrix}3x=x+k2\pi\\3x=\pi-x+k2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\left(k\in Z\right)\)
trong \(\left(\frac{-\pi}{2};\frac{3\pi}{2}\right)\) với \(x=k\pi\Rightarrow k\in\left\{0;1\right\}\)
với \(x=\frac{\pi}{4}+\frac{k\pi}{4}\Rightarrow k\in\left\{-1;0;1;2\right\}\)
Vậy 2 đths cắt nhau tại 6 điểm trong \(\left(\frac{-\pi}{2};\frac{3\pi}{2}\right)\)
5. cot = \(\sqrt{3}\) \(\Leftrightarrow tanx=\frac{1}{\sqrt{3}}\Leftrightarrow x=\frac{\pi}{6}+k\pi\left(k\in Z\right)\)
x \(\in\left[0;2017\pi\right]\Rightarrow k\in\left\{0;1;2;....;2015;2016\right\}\)
Vậy ptrinh có 2017 nghiệm.
CHÚC BẠN HỌC TỐT..!!
Phương trình \(\tan 3x.\cot 2x = 1\)
\(\Leftrightarrow \tan 3x = \dfrac{1}{{\cot 2x}}\\ \Leftrightarrow \tan 3x = \tan 2x\\ \Leftrightarrow 3x = 2x + k\pi\)
\(\Leftrightarrow x = k\pi\) loại do điều kiện \(x \ne \dfrac{{k\pi }}{2}.\) => Chọn D
1: cos(3x-45 độ)=0
=>3x-45 độ=90 độ+k*180 độ
=>3x=135 độ+k*180 độ
=>x=45 độ+k*60 độ
=45 độ-120 độ+(k+2)*60 độ
=-75 độ+z*60 độ
=>Chọn B
2;
tan(x-15 độ)=1
=>x-15 độ=45 độ+k*180 độ
=>x=60 độ+k*180 độ
=>Chọn C
3: 2*cos(4x-20 độ)=0
=>cos(4x-20 độ)=0
=>4x-20 độ=90 độ+k*180 độ
=>4x=110 độ+k*180 độ
=>x=27,5 độ+k*45 độ
=>Chọn C