Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\begin{array}{l}\cot x{\rm{ }} = {\rm{ - 1}}\\ \Leftrightarrow \cot x{\rm{ }} = {\rm{ cot - }}\frac{\pi }{4}\\ \Leftrightarrow x{\rm{ }} = {\rm{ - }}\frac{\pi }{4} + k\pi ;k \in Z\end{array}\)
Vậy phương trình đã cho có nghiệm là \(x{\rm{ }} = {\rm{ - }}\frac{\pi }{4} + k\pi ;k \in Z\)
Chọn A
\(sin\left(x+\frac{\pi}{6}\right)=1\Rightarrow x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\Rightarrow x=\frac{\pi}{3}+k2\pi\)
ĐKXĐ: \(cos\left(x+\frac{\pi}{3}\right)\ne0\Rightarrow x+\frac{\pi}{3}\ne\frac{\pi}{2}+k\pi\)
\(\Rightarrow x\ne\frac{\pi}{6}+k\pi\)
\(\Rightarrow D=R\backslash\left\{\frac{\pi}{6}+k\pi;k\in Z\right\}\)
4sin2x = 3 <=> \(\left[{}\begin{matrix}sinx=\frac{\sqrt{3}}{2}\\sinx=\frac{-\sqrt{3}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\) hoặc \(\left[{}\begin{matrix}x=\frac{-\pi}{3}+k2\pi\\x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\)
kết hợp nghiệm trên đường tròn lượng giác , ta suy ra B
\(tanx=tan\alpha\Rightarrow x=\alpha+k\pi\)