K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2016

Để M có giá trị nguyên thì x - 2 chia hết cho x + 3

=> (x + 3) - 5 chia hét cho x + 3

=> 5 chia hết cho x + 3

=> x + 3 thuộc Ư(5) = {-1;1;-5;5}

Ta có:

x + 3-5-115
x-8-4-22

Ta có:﴾các số như 14‐x/4‐x đc vt dưới dạng p số nha﴿
14‐x/4‐x=10+4‐x/4‐x=10/4‐x+4‐x/4‐x=﴾10/4‐x﴿+1
Để ﴾10/4‐x﴿+1 đạtGTNN=>10/4‐x đạt GTNN =>4‐x đạt GTLN
mà ‐x<_﴾bé hơn hoặc bằng﴿0
=> 4‐x<_4
Vì 4‐x đạt GTLN =>4‐x=4=>x=0
khi đó, thay vào biểu thức, ta có:
14‐0/4‐0=14/4=3,5
Vậy GTNN của P bằng 3,5<=>x=0

17 tháng 8 2017

\(P=\frac{14-x}{4-x}=\frac{10+4-x}{4-x}=\frac{10}{4-x}+1\)

P đạt giá trị nhỏ nhất khi \(\frac{10}{4-x}\) nhỏ nhất <=> 4-x lớn nhất < 0 <=> 4-x=-1 <=> x=5 

29 tháng 1 2019

\(A=x^2-8x+2015\)

\(A=x^2-8x+16+1999\)

\(A=\left(x-4\right)^2+1999\)

..... tự làm nốt nhé.

29 tháng 1 2019

\(A=x^2-8x+2015\)

\(\Rightarrow A=x^2-8x+16+1999\)

\(\Rightarrow A=\left(x-4\right)^2+1999\)

\(\Rightarrow A\ge1999\)

Dấu "=" xảy ra:

\(\left(x-4\right)^2=0\)

\(\Rightarrow x-4=0\)

\(\Rightarrow x=0+4=4\)

Vậy A nhỏ nhất khi A = 1999 tại x = 4

8 tháng 5 2016

Ta có: |x-1| + |x-2| = |x-1| + |2-x|

Mà |x-1| + |x-2| \(\ge\) |x-1+x-2| hay |x-1| + |2-x| \(\ge\) |x-1+2-x|

                                         \(\Rightarrow\) |x-1| + |2-x| \(\ge\) 1

Vậy A có GTNN là 1 khi x \(\in\) {1;2}

    

8 tháng 5 2016

\(A=\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\)

Áp dụng bất đẳng thức : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\),dấu "=" xảy ra \(\Leftrightarrow ab\ge0\),ta có:

\(A\ge\left|\left(x-1\right)+\left(2-x\right)\right|=\left|x-1+2-x\right|=\left|1\right|=1\)

\(\Rightarrow A_{min}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-1\right)\left(2-x\right)\ge0\Leftrightarrow1\le x\le2\)

17 tháng 1 2016

áp dụng BĐT giá trị tuyệt đối: |a|+|b| > |a+b|

=>|x|+|8-x| > |x+(8-x)|=|8|=8

=>Amin=8


 

17 tháng 1 2016

A = |x| + |8 - x|

=> 8 - x = 0

=> x = 8 - 0 = 7

6 tháng 11 2016

|x-1|+|x-3| dat gia tri nho nhat

vi|x-1| lon hon hoac bang 0

  |x-3| lon hon hoac bang 0

nen |x-1|+|x-3| lon hon hoac bang 0

dau =  xay ra khi|x-1|=0 va |x-3|=0

                          nen x-1=0vax-3=0

                              nenx=1 va x=3 

vay x=1hoac x=3