Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: A=\(\frac{21x+3}{7x+1}=\frac{3\left(7x+1\right)}{7x+1}=3\) với x khác -1/7
Vâỵ vs mọi gt trị của x thuộc Z (x khác -1/7) thì A mang gt nguyên
b)ta có: B=\(\frac{3x+2}{2x+3}\) => 2B=\(\frac{3\left(2x+3\right)-5}{2x+3}=3-\frac{5}{2x+3}\)
để B có giá trị nguyên <=>2B có gt nguyên <=> \(\frac{5}{2x+3}\) có gt nguyên<=> 2x+3 là các ước nguyên của 5
Ư(5)={-5 ; -1 ; 1 ; 5}
ta có bảng:
2x+3 | -5 | -1 | 1 | 5 |
x | -4 | -2 | -1 | 1 |
Vậy với x={-4 ; -2 ; -1 ; 1} thì B nguyên
a) Gọi biểu thức trên là A. Để A nguyên thì \(5⋮2x+1\Leftrightarrow2x+1\inƯ\left(5\right)=\left(\pm1;\pm5\right)\)
Ta có bảng:
2x + 1 | -5 | -1 | 1 | 5 |
x | -3 | -1 | 0 | 2 |
Do vậy \(x=\left\{-3;-1;0;2\right\}\)
b) Đặt \(A=\frac{x^3-3x^2+5}{x+2}=\frac{x^3+2x^2-5x^2-10x+10x+20-15}{x+2}\)
\(=\frac{x^2.\left(x+2\right)-5x.\left(x+2\right)+10.\left(x+2\right)-15}{x+2}=\frac{\left(x+2\right).\left(x^2-5x+10\right)-15}{x+2}\)
\(=x^2-5x+10+\frac{15}{x+2}\)
Để A nguyên
=> 15/x+2 nguyên ( do x nguyên nên x2 -5x + 10 cũng nguyên)
=> 15 chia hết cho x + 2
=> x + 2 thuộc Ư(15)={1;-1;3;-3;5;-5;15;-15}
...
bn tự xét nha
a) \(3A=\frac{6x-9}{3x-2}=\frac{2\left(3x-2\right)-5}{3x-2}=2-\frac{5}{3x-2}\)
A nguyên <=> 3A nguyên <=> 5/3x-2 nguyên ( 2 nguyên rồi) <=> 3x-2 thuộc Ư(5) <=> 3x-2 thuộc (+-1; +-5)
đến đây lập bảng xét giá trị nha
b) \(2B=\frac{2x-2}{x^2+1}=\frac{x^2+1-\left(x^2-2x+1+2\right)}{x^2+1}=1-\frac{\left(x+1\right)^2+2}{x^2+1}\)
bài này mình chỉ làm tìm Min, Max thôi chứ kiểu này thì mình nghĩ k tìm đc giá trị nguyên đâu
Gợi ý thôi nhé
a: x^2 - 5x + 8 = x^2 - 3x - 2x + 6 + 2 = (x-3).(x-2) + 2
=> Phân thức sẽ nguyên khi 2/(x-3) nguyên (Do x-3 nguyên bởi x nguyên)
<=> x-3 thuộc Ư(2) do x nguyên
Các câu khác thì cứ làm sao cho nó thành đa thức như thế
ĐK : \(x\ne1\)
Sử dụng chia 2 đa thức ta được
\(\frac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}=x^2-2x+1+\frac{3}{x^2-4}\)
Để phân thức có giá trị nguyên
\(\Leftrightarrow\frac{3}{x^2-4}\inℤ\)
\(\Leftrightarrow x^2-4\inƯ\left(3\right)\)
Ta có bảng sau :
x2 - 4 | 1 | -1 | 3 | -3 |
x | \(\sqrt{5}\left(L\right)\) | \(\sqrt{3}\left(L\right)\) | \(\sqrt{7}\left(L\right)\) | 1 hoặc -1 |
Vậy ...............