K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2023

Ta có :

\(Q=\dfrac{x+1}{x-\sqrt[]{x}+1}\left(x\inℕ\right)\)

\(\Leftrightarrow Q=\dfrac{\left(x+1\right)\left(\sqrt[3]{x}+1\right)}{\left(\sqrt[3]{x}+1\right)\left(x-\sqrt[]{x}+1\right)}\)

\(\Leftrightarrow Q=\dfrac{\left(x+1\right)\left(\sqrt[3]{x}+1\right)}{\left(x+1\right)}\)

\(\Leftrightarrow Q=\sqrt[3]{x}+1\)

Để \(Q\inℕ\)

\(\Leftrightarrow\sqrt[3]{x}+1\inℕ\)

\(\Leftrightarrow\sqrt[3]{x}\inℕ\)

\(\Leftrightarrow x=\left\{x\inℕ|x=k^3;k\inℕ\right\}\)

16 tháng 2 2019

Lấy (1) cộng (2), ta có:

\(\left(2a+1\right)x=a^2+4a+5\)\(\Rightarrow x=\dfrac{a^2+4a+5}{2a+1}\)

Thay vào (1): \(\dfrac{\left(a^2+4a+5\right)\left(a+1\right)-10a-5}{2a+1}.\dfrac{1}{a}\)\(=\dfrac{a^3+5a^2-a}{2a+1}.\dfrac{1}{a}=\dfrac{a^2+5a-1}{2a+1}\)

Để x,y nguyên thì \(\left\{{}\begin{matrix}a^2+4a+5⋮2a+1\\a^2+5a-1⋮2a+1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a\left(a+2\right)+2a+5⋮2a+1\\a^2+2a+3a-1⋮2a+1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}4⋮2a+1\\a+2⋮2a+1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}4⋮2a+1\\3⋮2a+1\end{matrix}\right.\)\(\Rightarrow2a+1\in\left\{\pm1\right\}\)\(\Rightarrow a\in\left\{-1;0\right\}\)

Vậy với a=-1;0 thì hpt có nghiệm (x;y) với x,y thuộc Z.

26 tháng 6 2017

A= căn (5-2 (căn 5) +1)-căn (5+2 (căn 5) +1)

=căn ((căn 5)-1)^2 -căn ((căn 5)+1)^2

=l (căn 5) -1l  -   l (căn 5) +1l

=căn 5 -1 -căn 5 -1 

=-2

26 tháng 6 2017

A,  biến đổi 6= căn bậc hai của 5 + 1 -> hằng đẳng thức

Tính tiếp sẽ ra

4 tháng 11 2015

\(A=\frac{5}{\sqrt{x}-3}\)

A là số nguyên khi \(\sqrt{x}\)- 3 là U( 5) =-1;1;-5;5

\(\sqrt{x}\)- 3 =-1 =>x=4

\(\sqrt{x}\)-3 =1 => x =16

\(\sqrt{x}\)- 3 =-5 loại

\(\sqrt{x}\)-3 =5 => x = 64