Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{5-2\sqrt{5}+1}-\sqrt{5+2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\sqrt{5}-1-\sqrt{5}-1=-2\)
Vậy \(A\in Z\)
Làm tương tự với B.
*\(A=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}-1-\sqrt{5}+1=2\)
\(\Rightarrow A\in Z\)
* \(B=\dfrac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-2\sqrt{2}}}-\dfrac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\) \(=\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(3-2\sqrt{2}\right)^2}}-\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{\left(3+2\sqrt{2}\right)^2}}\) \(=\dfrac{\sqrt{2}-1}{3-2\sqrt{2}}-\dfrac{\sqrt{2}+1}{3+2\sqrt{2}}\)
\(=\dfrac{\left(\sqrt{2}-1\right)\left(3+2\sqrt{2}\right)-\left(\sqrt{2}+1\right)\left(3-2\sqrt{2}\right)}{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}\) \(=\dfrac{3\sqrt{2}+4-3-2\sqrt{2}-3\sqrt{2}+4-3+2\sqrt{2}}{9-8}\)
\(=2\)
\(\Rightarrow B\in Z\)
B= \(\frac{3-2\sqrt{2}}{\sqrt{\left(3-2\sqrt{2}\right)^2}}-\frac{3+2\sqrt{2}}{\sqrt{\left(3+2\sqrt{2}\right)^2}}=\frac{3-2\sqrt{2}}{3-2\sqrt{2}}-\frac{3+2\sqrt{2}}{3+2\sqrt{2}}=\) \(1-1=0\)
h)
\(H=\frac{(\sqrt{2+\sqrt{3}})^2-(\sqrt{2-\sqrt{3}})^2}{\sqrt{(2-\sqrt{3})(2+\sqrt{3})}}=\frac{2+\sqrt{3}-(2-\sqrt{3})}{\sqrt{2^2-3}}=2\sqrt{3}\)
i)
\(I=\frac{2+\sqrt{3}}{2+\sqrt{3+1+2\sqrt{3.1}}}+\frac{2-\sqrt{3}}{2-\sqrt{3+1-2\sqrt{3.1}}}=\frac{2+\sqrt{3}}{2+\sqrt{(\sqrt{3}+1)^2}}+\frac{2-\sqrt{3}}{2-\sqrt{(\sqrt{3}-1)^2}}\)
\(=\frac{2+\sqrt{3}}{2+\sqrt{3}+1}+\frac{2-\sqrt{3}}{2-(\sqrt{3}-1)}=\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\)
\(=\frac{(2+\sqrt{3})(3-\sqrt{3})+(2-\sqrt{3})(3+\sqrt{3})}{(3+\sqrt{3})(3-\sqrt{3})}=\frac{6}{6}=1\)
ê)
\(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}=\sqrt{8+2\sqrt{2}+2\sqrt{5}+2\sqrt{10}}\)
\(=\sqrt{(2+5+2\sqrt{2.5})+1+2(\sqrt{2}+\sqrt{5})}\)
\(=\sqrt{(\sqrt{2}+\sqrt{5})^2+1+2(\sqrt{2}+\sqrt{5})}=\sqrt{(\sqrt{2}+\sqrt{5}+1)^2}=\sqrt{2}+\sqrt{5}+1\)
g)
\(13+\sqrt{48}=13+2\sqrt{12}=12+1+2\sqrt{12.1}=(\sqrt{12}+1)^2\)
\(\Rightarrow \sqrt{13+\sqrt{48}}=\sqrt{12}+1\)
\(\Rightarrow \sqrt{3+\sqrt{13+\sqrt{48}}}=\sqrt{4+\sqrt{12}}=\sqrt{3+1+2\sqrt{3.1}}=\sqrt{(\sqrt{3}+1)^2}=\sqrt{3}+1\)
\(\Rightarrow 2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}=2\sqrt{2-\sqrt{3}}=\sqrt{2}.\sqrt{4-2\sqrt{3}}=\sqrt{2}.\sqrt{(\sqrt{3}-1)^2}\)
\(=\sqrt{2}(\sqrt{3}-1)=\sqrt{6}-\sqrt{2}\)
\(\Rightarrow G=1\)
a/ \(A=\frac{\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}{2-\sqrt{3}}+\frac{\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}{2+\sqrt{3}}\)
\(A=\frac{2+\sqrt{3}+2-\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\frac{4}{1}=4\)
b/\(A=\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(3-2\sqrt{2}\right)^2}}-\frac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{\left(3+2\sqrt{2}\right)^2}}\)
\(A=\frac{\sqrt{2}-1}{3-2\sqrt{2}}-\frac{\sqrt{2}+1}{3+2\sqrt{2}}\)
\(A=\frac{\left(\sqrt{2}-1\right)\left(3+2\sqrt{2}\right)-\left(\sqrt{2}+1\right)\left(3-2\sqrt{2}\right)}{9-8}\)
\(A=3\sqrt{2}+4-3-2\sqrt{2}-3\sqrt{2}+4-3+2\sqrt{2}=8\)
c/ \(A=\frac{\left(\sqrt{5}+\sqrt{3}\right)^2+\left(\sqrt{5}-\sqrt{3}\right)^2}{5-3}\)
\(A=\frac{5+2\sqrt{15}+3+5-2\sqrt{15}+3}{2}=8\)
d/ theo câu c có \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}=8\)
\(\Rightarrow A=8-\frac{\left(\sqrt{5}+1\right)^2}{5-1}=\frac{32-5-2\sqrt{5}-1}{4}=\frac{2\left(13-\sqrt{5}\right)}{4}=\frac{13-\sqrt{5}}{2}\)
f, \(\sqrt{\sqrt{5}+\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}+\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=\sqrt{\sqrt{5}+\sqrt{3-2\sqrt{5}+3}}=\sqrt{\sqrt{5}+\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}+\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{\sqrt{5}+\sqrt{5}-1}=\sqrt{2\sqrt{5}-1}\)
mik sửa lại câu f , tí nhé :
f , \(\sqrt{\sqrt{5}+\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
A= căn (5-2 (căn 5) +1)-căn (5+2 (căn 5) +1)
=căn ((căn 5)-1)^2 -căn ((căn 5)+1)^2
=l (căn 5) -1l - l (căn 5) +1l
=căn 5 -1 -căn 5 -1
=-2
A, biến đổi 6= căn bậc hai của 5 + 1 -> hằng đẳng thức
Tính tiếp sẽ ra