Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{x-1}{9}=\frac{8}{3}\)
\(\Leftrightarrow x-1=24\)
\(\Rightarrow x=25\)
\(b,-\frac{x}{4}=-\frac{9}{x}\)
\(\Leftrightarrow x^2=36\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
\(c,\frac{x}{4}=\frac{18}{x+1}\)
\(\Leftrightarrow x^2+x=72\)
\(\Leftrightarrow x\left(x+1\right)=72..\)
ấn nhầm: lm tiếp nhé!
\(x\left(x+1\right)=72\)
\(\text{Mà x thuộc Z nên }x\left(x+1\right)=8\left(8+1\right)\)
\(\Leftrightarrow x=8\)
\(\frac{x}{-7}=\frac{5}{-35}\)
\(\frac{x.5}{-35}=\frac{5}{-35}\)
=> x . 5 = 5
x = 5 : 5
x = 1
a/ \(\frac{x+2}{27}=\frac{x}{9}\)
=> 9(x + 2) = 27x
=> 9x + 18 = 27x
=> 9x + 18 - 27x = 0
=> 9x - 27x + 18 = 0
=> -18x = -18
=> x = 1
b/ \(\frac{-7}{x}=\frac{21}{34-x}\)
=> -7(34 - x) = 21x
=> -238 + 7x = 21x
=> 21x - 7x = -238
=> -14x = 238
=> x = -17
c) \(\frac{-8}{15}< \frac{x}{40}< \frac{-7}{15}\)
Ta có BCNN(15,40,15) = 120
=> \(\frac{-64}{120}< \frac{3x}{120}< \frac{-56}{120}\)
=> -64 < 3x < -56
=> x \(\in\){ -19;-20;-21}
Câu d tương tự
a)
\(\frac{-x}{4}=\frac{-9}{x}\)
\(\Rightarrow-x.x=-9.4\)
\(\Rightarrow-\left(x^2\right)=-36\)
\(\Rightarrow x^2=36\)
Mà 36 =6 . 6
\(\Rightarrow x=6\)
b)
\(\frac{x}{4}=\frac{18}{x+1}\)
\(\Rightarrow x\left(x+1\right)=18.4\)
\(\Rightarrow x\left(x+1\right)=2.3.3.2.2\)
\(\Rightarrow x\left(x+1\right)=\left(2.2.2\right).\left(3.3\right)\)
\(\Rightarrow x\left(x+1\right)=8.9\)
\(\Rightarrow x=8\)
Vậy \(x=8\)
Bài 3
\(\frac{x-1}{9}=\frac{8}{3}\)
\(\Rightarrow\left(x-1\right).3=8.9\)
\(\Rightarrow\left(x-1\right).3=72\)
\(\Rightarrow x-1=24\)
\(\Rightarrow x=25\)
\(\frac{-x}{4}=\frac{-9}{x}\)
\(\Rightarrow\left(-x\right).x=\left(-9\right).4\)
\(\Rightarrow-x=-36\)
\(\Rightarrow x=36\)
\(\frac{x}{4}=\frac{18}{x+1}\)
\(\Rightarrow x.\left(x+1\right)=4.18\)
\(\Rightarrow x.\left(x+1\right)=72\)
Vì x và x + 1 là 2 số tự nhiên liên tiếp
\(\Rightarrow x\left(x+1\right)=8.9\)
\(\Rightarrow\orbr{\begin{cases}x=8\\x=8\end{cases}}\)
Bài 4
\(\frac{x-4}{y-3}=\frac{4}{3},x-y=5\)
Ta có :
\(x-y=5\)
\(\Rightarrow x=5+y\)
\(\Rightarrow\frac{y+5-4}{y-3}=\frac{4}{3}\)
\(\Rightarrow\frac{y+1}{y-3}=\frac{4}{3}\)\(\)
\(\Rightarrow\left(y+1\right).3=\left(y-3\right).4\)
\(\Rightarrow y.3+1.3=y.4-3.4\)
\(\Rightarrow y.3+3=y.4-12\)
\(\Rightarrow y.3-y.4=-12-3\)
\(\Rightarrow-1y=-15\)
\(\Rightarrow y=\left(-15\right):\left(-1\right)\)
\(\Rightarrow y=15\)
Vì x = y + 5
\(\Rightarrow x=15+4\)
\(\Rightarrow x=19\)
Vậy x = 19 , y = 15
\(\frac{-x}{4}=\frac{-9}{x}\)
\(\Rightarrow\left(-x\right).x=4.\left(-9\right)\)
\(\Rightarrow-x=-9;x=4\)
\(\Rightarrow x=9;x=4\)
Để \(A\) là số nguyên thì \(\left(n+1\right)⋮\left(n-3\right)\)
Ta có :
\(n+1=n-3+4\) chia hết cho \(n-3\) \(\Rightarrow\) \(4⋮\left(n-3\right)\) \(\left(n-3\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Suy ra :
\(n-3\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(4\) | \(2\) | \(5\) | \(1\) | \(7\) | \(-1\) |
Vậy \(n\in\left\{4;2;5;1;7;-1\right\}\)
a, \(\frac{x-1}{9}=\frac{8}{3}\)
\(\Rightarrow\left(x-1\right).3=8.9\)
\(\Rightarrow\left(x-1\right).3=72\)
\(\Rightarrow x-1=72:3\)
\(\Rightarrow x-1=24\)
\(\Rightarrow x=24+1\)
\(\Rightarrow x=25\)
b, \(\frac{-x}{4}=\frac{-9}{x}\)
\(\Rightarrow-x.x=-9.4\)
\(\Rightarrow-\left(x^2\right)=-36\)
\(\Rightarrow x^2=36\)
\(\Rightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
c, \(\frac{x}{4}=\frac{18}{x+1}\)
\(\Rightarrow x\left(x+1\right)=4.18\)
\(\Rightarrow x.x+x.1=72\)
\(\Rightarrow x^2+x=72\)
\(\Rightarrow x^2+x-72=0\)
\(\Rightarrow x^2+x-8^2+8=0\)
\(\Rightarrow x=8\)
a) x-1=24
=>x=24+1=25
=> x=25
b)=>-(x^2)=-36
=>x=6
k mik nha