Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2x + 3)2 = [x - (-7)]
(2x + 3)2 = x + 7
\(\Rightarrow\orbr{\begin{cases}2x+3=x+7\\2x+3=-x-7\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=-\frac{10}{3}\end{cases}}}\)
a) \(\left(\left|x\right|+3\right):5-3=12\Leftrightarrow\left|x\right|+3=45\Leftrightarrow\orbr{\begin{cases}x=42\\x=-42\end{cases}}\)
b) \(86:\left[2\left(2x-1\right)^2-7\right]+4^2=2\cdot3^2\Leftrightarrow2\left(2x-1\right)^2-7=43\Leftrightarrow\left(2x-1\right)^2=25\Leftrightarrow\orbr{\begin{cases}2x-1=-5\\2x-1=5\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
a) \(\left(\left|x\right|+3\right)\div5-3=12\)
\(\left(\left|x\right|+3\right)\div5=12+3\)
\(\left(\left|x\right|+3\right)\div5=15\)
\(\left|x\right|+3=15.5\)
\(\left|x\right|+3=75\)
\(\left|x\right|=75-3\)
\(\left|x\right|=72\)
\(\Rightarrow\orbr{\begin{cases}x=72\\x=-72\end{cases}}\)
Vậy \(x\in\left\{72;-72\right\}\)
b) \(86\div\left[2,\left(2x-1\right)^2-7\right]+4^2=2.3^2\)
\(86\div\left[2.\left(2x-1\right)^2-7\right]+16=18\)
\(86\div\left[2.\left(2x-1\right)^2-7\right]=18-16\)
\(86\div\left[2.\left(2x-1\right)^2-7\right]=2\)
\(2.\left(2x-1\right)^2-7=86\div2\)
\(2.\left(2x-1\right)^2-7=43\)
\(2.\left(2x-1\right)^2=43+7\)
\(2.\left(2x-1\right)^2=50\)
\(\left(2x-1\right)^2=50\div2\)
\(\left(2x-1\right)^2=25\)
\(\left(2x-1\right)^2=5^2\)
\(\Rightarrow2x-1=5\)
\(2x=5+1\)
\(2x=6\)
\(x=6\div2\)
\(x=3\)
a) (x + 5)(2x - 4) = 0
\(\Rightarrow\orbr{\begin{cases}x+5=0\\2x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}}\)
b) 2(x + 5) - 3(x - 7) = 4
2x + 10 - (3x - 21) = 4
2x + 10 - 3x + 21 = 4
(-x) + 31 = 4
(-x) = 4 - 31 = -27
=> x = 27
c) (x - 4)(2x2 + 3) = 0
\(\Rightarrow\orbr{\begin{cases}x-4=0\\2x^2+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x^2=\frac{-3}{2}\end{cases}}}\)
Vì x2 \(\ge\)0
Mà -3/2 < 0
=> Không có giá trị thõa mãn ở trường hợp x2
Vậy x = 4
1, xy-2x+3y=9
<=> xy-2x+3y-9=0
<=> x(y-2) + 3(y-2)=0
<=>(y-2)(x+3)=0
<=>+) y-2=0 <=> y=2
+)x+3=0<=>x=-3
Vì \(\left(2x+3\right)^2=\left[x-\left(-7\right)\right]\)
\(\Rightarrow2x+3=x+7\) hoặc \(2x+3=-x-7\)
Với \(2x+3=x+7\)
\(\Rightarrow2x-x=-3+7\)
\(\Rightarrow x=4\) (\(t\)/\(m\))
Với \(2x+3=-x-7\)
\(\Rightarrow2x+x=-3-7\)
\(\Rightarrow3x=-10\)
\(\Rightarrow x=\frac{-10}{3}\) (\(t\)/\(m\))
Vậy \(x=\left[\begin{matrix}4\\\frac{-10}{3}\end{matrix}\right.\).
(3x - 24 ) x 73 = 2 x 76
3x - 16 = 2 x 76 : 73
3x - 16 = 2 x 73
3x - 16 = 686
3x = 686 + 16
3x = 702
x = 702 : 3
x = 234
a)\(x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}}\)
Vậy x=3 hoặc -3