Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 6,5 -9/4:/x+1/3\=/-2\
6,5-9/4:/x+1/3\=2
9/4:/x+1/3\=6,5-2
9/4:/x+1/3\=4,5
/x+1/3\=9/4:4,5
/x+1/3\=1/2
x+1/3=1/2 hoặc x+1/3= -1/2
x= 1/2-1/3 x= -1/2-1/3
x= 1/6 x= -5/6
Vậy x=1/6 hoặcx= -5/6
b. 2-/3/2x-1/4\ = /-5/4\
2-/3/2x-1/4\=5/4
/3/2x-1/4\=2-5/4
/3/2x-1/4\=3/4
3/2x-1/4=3/4 hoặc 3/2x-1/4= -3/4
3/2x=3/4+1/4 3/2x= -3/4+1/4
3/2x=1 3/2x= -1/2
x=1:3/2 x= -1/2:3/2
x=2/3 x= -1/3
Vậy x=2/3 hoặc x= -1/3
a/ \(\left(x+2\right)\left(x-4\right)\le0\)
\(\Rightarrow\begin{cases}x+2\ge0\\x-4\le0\end{cases}\) hoặc \(\begin{cases}x+2\le0\\x-4\ge0\end{cases}\)
\(\Rightarrow-2\le x\le4\)
b/ \(\frac{2x+3}{x-4}>1\Leftrightarrow\frac{2x+3}{x-4}-1>0\Leftrightarrow\frac{x+7}{x-4}>0\)
\(\Rightarrow\begin{cases}x+7>0\\x-4>0\end{cases}\) hoặc \(\begin{cases}x+7< 0\\x-4< 0\end{cases}\)
\(\Rightarrow\left[\begin{array}{nghiempt}x>4\\x< -7\end{array}\right.\)
c/ \(\frac{x+3}{x+4}>1\Rightarrow\frac{x+3}{x+4}-1>0\Rightarrow-\frac{1}{x+4}>0\Rightarrow x+4< 0\Rightarrow x< -4\)
a.|x-1/2|,|y+3/2|,|7-5/2| đều lớn hơn hoặc bằng 0
=>không tìm thấy x,y
b
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
\(\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z-1\right|=0\) \(0\)
<=> \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{3}{4}=0\\z-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{3}{4}\\z=1\end{cases}}\)
\(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\\frac{3}{4}-\frac{2}{5}+z=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\z=\frac{-7}{20}\end{cases}}\)
\(\left|x-\frac{2}{3}\right|+\left|x+y+\frac{3}{4}\right|+\left|y-z-\frac{5}{6}\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{2}{3}=0\\x+y+\frac{3}{4}=0\\y-z-\frac{5}{6}=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{-17}{12}\\z=\frac{-9}{4}\end{cases}}\)
\(\left|x-\frac{1}{2}\right|+\left|xy-\frac{3}{4}\right|+\left|2x-3y-z\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\xy-\frac{3}{4}=0\\2x-3y-z=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}:\frac{1}{2}=\frac{3}{2}\\z=\frac{-7}{2}\end{cases}}\)
các câu còn lại tương tự
a, \(\left|x+\frac{1}{3}\right|=0\Leftrightarrow x=-\frac{1}{3}\)
b, \(\left|\frac{5}{18}-x\right|-\frac{7}{24}=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{18}-x=\frac{7}{24}\\\frac{5}{18}-x=-\frac{7}{24}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{72}\\x=\frac{41}{72}\end{cases}}\)
c, \(\frac{2}{5}-\left|\frac{1}{2}-x\right|=6\Leftrightarrow\left|\frac{1}{2}-x\right|=-\frac{28}{5}\)vô lí
Vì \(\left|\frac{1}{2}-x\right|\ge0\forall x\)*luôn dương* Mà \(-\frac{28}{5}< 0\)
=> Ko có x thỏa mãn
\(|x+\frac{1}{3}|=0\)
\(< =>x+\frac{1}{3}=0< =>x=-\frac{1}{3}\)
\(|x+\frac{3}{4}|=\frac{1}{2}\)
\(< =>\orbr{\begin{cases}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}x=-\frac{1}{4}\\x=-\frac{5}{4}\end{cases}}\)