Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt A=\(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)\) âm mà \(x^2-1>x^2-4>x^2-7>x^2-10\)
=>\(x^2-10\) âm
hoặc \(x^2-10,x^2-7\) và \(x^2-4\) âm
nếu \(x^2-10\) mà \(x^2-7\) dương
=>x=3
tương tự 3 số âm thì x=2
Vậy x=2 hoặc 3
1.
a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)
b) x=0
d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)
e) \(x=\frac{2}{3}\)
\(x^2-1>x^2-4>x^2-7>x^2-10\)
\(\text{Để }\left(x^2-1\right).\left(x^2-4\right).\left(x^2-7\right).\left(x^2-10\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left(x^2-1\right)>0\\\left(x^2-4\right).\left(x^2-7\right).\left(x^2-10\right)< 0\end{cases}\text{hoặc }\hept{\begin{cases}\left(x^2-1\right).\left(x^2-4\right).\left(x^2-7\right)>0\\\left(x^2-10\right)< 0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}\text{hoặc }\hept{\begin{cases}x^2>7\\x^2< 10\end{cases}}}\)
\(\Rightarrow x^2=9\Rightarrow x=\pm3\)
Xét thấy tích của 4 số là một số âm
=> Có 1 hoặc 3 số là 1 số âm
Xét từng trường hợp, ta có:
+ Có một số âm:
x2 - 10 < x2 - 7 => x2 - 10 < 0 < x2 - 7
=> 7 < x2 < 10
=> x2 = 9
=> x = {3;-3}
+ Có 3 số là số âm, 1 số dương:
x2 - 4 < x2 - 1
=> 1 < x2 < 4
=> x không có giá trị thỏa mãn
Vậy x = -3 và x = 3
Tìm x nguyên sao cho\(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
Bài 1:
a) (2x-3). (x+1) < 0
=>2x-3 và x+1 ngược dấu
Mà 2x-3<x+1 với mọi x
\(\Rightarrow\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Rightarrow\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)\(\Rightarrow-1< x< \frac{3}{2}\)
b)\(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Rightarrow x-\frac{1}{2}\) và x+3 cùng dấu
Xét \(\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\)\(\Rightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\)
Xét \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)\(\Rightarrow\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
=>....
Bài 2:
\(S=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{999.1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\cdot\frac{998}{3003}\)
\(=\frac{499}{3003}\)