Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì x + 2 = y + 1 = z + 3 => x = y - 1 = z + 1 ; y = x + 1 = z + 2; z = x + 1 = y - 2 và z < x < y
ta có (x-1/3).(y-1/2).(z-5)=0 => ta có 3 TH
TH1 z - 5 = 0 => z = 5 ; y = 7 ; x = 4
TH2 x - 1/3 = 0 => x = 1/3 ; y = 4/3 ; z = -2/3
TH3 y - 1/2 = 0 => y = 1/2 ; x = -1/2 ; z = -3/2
nhớ cho mik nha
Ta có:
\(\left(x-\frac{1}{2}\right).\left(y-\frac{1}{2}\right).\left(z-5\right)=0\)
\(\Rightarrow x-\frac{1}{2}=0;y-\frac{1}{2}=0\)hoặc \(z-5=0\)
Với \(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)\(\Rightarrow\)\(x+2=\frac{1}{3}+2=\frac{7}{3}=y+1=z+3\)\(\Rightarrow y=...;z=...\)
Với \(y-\frac{1}{2}=0\Rightarrow y=\frac{1}{2}\)\(\Rightarrow....\)
Với \(z-5=0\)\(\Rightarrow.....\)
B tự làm nốt nhé
a) \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
b)\(\orbr{\begin{cases}3x=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
c)\(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)
d)\(\orbr{\begin{cases}x^2\\x+4=0\end{cases}=0\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}}\)
e)\(\orbr{\begin{cases}\left(x+1\right)^2\\3x-5=0\end{cases}=0}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{3}\end{cases}}\)
g)\(x^2+1=0\Rightarrow x^2=-1\Rightarrow x\in\varphi\)
h)Tương tự các câu trên
i) x = 0
k)\(\left(\frac{3}{4}\right)^x=1=\left(\frac{3}{4}\right)^0\Rightarrow x=0\)
l)\(\left(\frac{2}{5}\right)^{x+1}=\frac{8}{125}=\left(\frac{2}{5}\right)^3\)
=> x + 1 = 3 => x = 2
x.(x+1)=0
suy ra x=0 hoac x+1=0
x=0-1
x=-1
vay x=0 hoac x=-1
mấy câu sau cũng làm tương tự
Giải:
Vì tích \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)\) là một số âm nên phải có \(1\) số âm hoặc \(3\) số âm
Ta có: \(x^2-10< x^2-7< x^2-4< x^2-1\)
Ta xét \(2\) trường hợp sau:
Trường hợp \(1\): Có \(1\) số âm:
\(x^2-10< x^2-7\Rightarrow x^2-10< 0< x^2-7\)
\(\Rightarrow7< x^2< 10\Rightarrow x^2=9\Rightarrow x=\pm3\)
Trường hợp \(2\): Có \(3\) số âm:
\(x^2-4< x^2-1\Rightarrow x^2-4< 0< x^2-1\)
\(\Rightarrow1< x^2< 4\) Mà \(x\in Z\) nên không tồn tại \(x\)
Vậy \(x=\pm3\)
1, x2 = 0
=> x=0
2,x2=1
=> x= 1 hoặc x=-1
3,x2=3
=>\(x=\sqrt{3}\)
4,x2=6
=>\(x=\sqrt{6}\)
5,x2=7
=>\(x=\sqrt{7}\)
a, \(\left(x-1\right).\left(x+2\right)\)\(>0\Rightarrow\orbr{\begin{cases}x-1< 0;x+2< 0\left(loai\right)\Rightarrow x< 1\\x-1>0;x+2>0\Rightarrow x>1;x>-2\end{cases}}\)
=> -2 < x < 1
Câu b và câu d làm tương tự nha bạn(Câu b thì xét khác dấu)
a)
( 4x - 9 ) ( 2,5 + (-7/3) . x ) = 0
\(\Rightarrow\orbr{\begin{cases}4x-9=0\\2,5+\frac{-7}{3}x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{9}{4}\\x=\frac{15}{14}\end{cases}}\)
P/s: đợi xíu làm câu b
b) \(\frac{1}{x\left(x+1\right)}\cdot\frac{1}{\left(x+1\right)\left(x+2\right)}\cdot\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2015}\)
\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2015}\)
\(\frac{-1}{x+3}=\frac{1}{2015}\)
\(\Leftrightarrow x+3=-2015\)
\(\Leftrightarrow x=-2018\)
Vậy,.........
a) (2 - x)(2x + 1) > 0
TH1: \(\hept{\begin{cases}2-x>0\\2x+1>0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x>-\frac{1}{2}\end{cases}\Rightarrow}-\frac{1}{2}< x< 2}\)
TH2: \(\hept{\begin{cases}2-x< 0\\2x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>2\\x< -\frac{1}{2}\end{cases}\left(vl\right)}}\)(vô lí)
Vậy: -1/2 < x < 2
b) (2x+3)(x + 1) < 0
TH1: \(\hept{\begin{cases}2x+3>0\\x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-\frac{3}{2}\\x< -1\end{cases}\Rightarrow-\frac{3}{2}< x< -1}}\)
TH2: \(\hept{\begin{cases}2x+3< 0\\x+1>0\end{cases}\Rightarrow\hept{\begin{cases}\left(x< -\frac{3}{2}\right)\\x>-1\end{cases}}\left(vl\right)}\)(vô lí)
Vậy -3/2 < x < -1