Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\sqrt{3}.x-\sqrt{75}=0\)
\(\Leftrightarrow\sqrt{3}.x-5\sqrt{3}=0\)
\(\Leftrightarrow\sqrt{3}\left(x-5\right)=0\)
Vì \(\sqrt{3}\ne0\)
Nên : x - 5 = 0
Vậy x = 5.
b) Ta có : \(\sqrt{2}.x+\sqrt{2}=\sqrt{8}+\sqrt{32}\)
\(\Leftrightarrow\sqrt{2}\left(x+1\right)=6\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}\left(x+1\right)-6\sqrt{2}=0\)
\(\Leftrightarrow\sqrt{2}.\left(x+1-6\right)=0\)
\(\Leftrightarrow\sqrt{2}.\left(x-5\right)=0\)
Vì \(\sqrt{2}\ne0\)
Nên x - 5 = 0
Suy ra : x = 5
1. \(N=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\right):\frac{\sqrt{x}-3}{2\sqrt{x}-x}\)
\(N=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}+\frac{4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)
\(N=\left(\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)
\(N=\left(\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)
\(N=\left(\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right).\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(N=\frac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(N=\frac{4x}{x-3}\)
Vậy \(N=\frac{4x}{x-3}\)với \(x>0,x\ne4,x\ne9\)
2.Với \(x>0,x\ne4,x\ne9\)
Ta có \(N< 0\)\(\Leftrightarrow\frac{4x}{x-3}< 0\)\(\Leftrightarrow x-3< 0\)(Vì \(x>0\Leftrightarrow4x>0\)\(với\forall x\))\(\Leftrightarrow x< 3\)
Vậy ..........
3. Với \(x>0,x\ne4,x\ne9\)
Ta có \(\left|N\right|=1\Leftrightarrow\left|\frac{4x}{x-3}\right|=1\Leftrightarrow\orbr{\begin{cases}\frac{4x}{x-3}=1\\\frac{4x}{x-3}=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}4x=3-x\\4x=x-3\end{cases}}\)\(\orbr{\begin{cases}x=\frac{3}{5} \left(N\right)\\x=-1\left(N\right)\end{cases}}\)
Vậy ...............
\(Q=\left(\frac{\sqrt{x}^2-1}{2\sqrt{x}}\right)^2.\left[\frac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)
\(Q=\left[\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{2\sqrt{x}}\right].\left[\frac{\left(\sqrt{x}-1+\sqrt{x}+1\right)\left(\sqrt{x}-1-\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)
\(Q=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{2\sqrt{x}}.\frac{-4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(Q=\frac{-4\sqrt{x}}{2\sqrt{x}}=-2\)
a, đổi dấu ở phân số cuối để mẫu thành x-4
rồi sau quy đồng mẫu chung là x-4
bn sẽ rút gọn được
b, theo câu a ta có P = \(\frac{3x-3\sqrt{x}-3}{\left(\sqrt{x-2}\right)\left(\sqrt{x+2}\right)}\)
2 trường hợp
th1 tử và mẫu cùng dương
th2
tử và mẫu cùng âm
c, thay x= 4 vào biểu thức đã rút gọn ở câu a
#)Giải :
Bài 1 :
a) \(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)
\(=\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right]\frac{\left(1-x\right)^2}{2}\)
\(=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x+1}\right)^2}{2}\)
\(=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)
\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)
b) Để \(P>0\Rightarrow\hept{\begin{cases}\sqrt{x}>0\\1-\sqrt{x}>0\end{cases}\Rightarrow0< x< 1}\)
c) \(P=-x+\sqrt{x}=-\left(x-2\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Dấu ''='' xảy ra khi \(x=\frac{1}{4}\)
a) Đề có lẽ là:
đk: \(x\ge0\)
\(\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}+2\right)x=x\sqrt{x}-\sqrt{x}+3\)
\(\Leftrightarrow x+2\sqrt{x}+1+x\sqrt{x}+2x-x\sqrt{x}+\sqrt{x}-3=0\)
\(\Leftrightarrow3x+3\sqrt{x}-2=0\)
\(\Leftrightarrow3\left(x+\sqrt{x}+\frac{1}{4}\right)-\frac{11}{4}=0\)
\(\Leftrightarrow\left(\sqrt{x}+\frac{1}{2}\right)^2-\frac{11}{12}=0\)
\(\Leftrightarrow\left(\sqrt{x}+\frac{3+\sqrt{33}}{6}\right)\left(\sqrt{x}+\frac{3-\sqrt{33}}{6}\right)=0\)
Vì \(\sqrt{x}\ge0\left(\forall x\right)\)
=> \(\sqrt{x}=\frac{3-\sqrt{33}}{6}\Rightarrow x=\frac{7-\sqrt{33}}{6}\)
b) đk: \(x\ge1\)
Ta có: \(\sqrt{4\left(x^2-1\right)}-2\sqrt{15}=0\)
\(\Leftrightarrow\sqrt{x^2-1}=\sqrt{15}\)
\(\Leftrightarrow x^2-1=15\)
\(\Leftrightarrow x^2=16\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
a) \(\sqrt{x^2-9}-3\sqrt{x-3}=0\)(ĐKXĐ: \(x\ge\pm3\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)
\(\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)(TM)
b)\(\sqrt{x^2-4}-2\sqrt{x+2}=0\)
ĐKXĐ: \(x\ge\pm2\)
\(\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-2\sqrt{x+2}=0\)
\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{x-2}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}=0\\\sqrt{x-2}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\left(ktm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
I) xd mọi x
\(\sqrt{x^2-8x+16}+\sqrt{x^2-10x+25}=9\)
\(\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-5\right)^2}=9=>\left|x-4\right|+\left|x-5\right|=9\)
\(\left[{}\begin{matrix}x< 4\Rightarrow4-x+5-x=>x=0\left(n\right)\\4\le x< 5\Rightarrow x-4+5-x=9\left(vn\right)\\x\ge5\Rightarrow x-4+x-5=9\Rightarrow x=9\left(n\right)\\\end{matrix}\right.\)
kết luận
\(\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
\(ĐKXĐ:x^2-x\ge0;x^2+x-2\ge0\)
\(\sqrt{x^2-x}+\sqrt{x^2+x-2}=0\left(1\right)\)
Ta luôn có:\(\sqrt{x^2-x}\ge0\forall x\inℝ\)
\(\sqrt{x^2+x-2}\ge0\forall x\inℝ\)
\(\Rightarrow\sqrt{x^2-x}+\sqrt{x^2+x-2}\ge0\left(2\right)\)
Từ (1) và (2)
Dấu "=" xảy ra\(\Leftrightarrow\hept{\begin{cases}x^2-x=0\\x^2+x-2=0\end{cases}}\)
Ta có:\(x^2-x=0\)
Nếu x=0(TM)
Nếu \(x\ne0\Rightarrow x\left(x-1\right)=0\Rightarrow x-1=0\Rightarrow x=1\)(TM)
Vậy phương tình có 2 nghiệm phận biệt là 0;1
\(\sqrt{x^2-x}+\sqrt{x^2+x-2}=0\)
<=> \(\sqrt{x^2-x}=-\sqrt{x^2+x-2}\)
bình phương 2 vế ta có:
<=> x^2 - x = x^2 + x - 2
<=> -x = x - 2
<=> -x - x = -2
<=> -2x = -2
<=> x = 1