Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-\frac{1}{2}\right)^2=0\)
\(x-\frac{1}{2}=0\)
\(x=0+\frac{1}{2}\)
\(x=\frac{1}{2}\)
b) \(\left(x-2\right)^2=1\)
\(\left(x-2\right)^2=1^2\)
\(x-2=1\)
\(x=1+2\)
\(x=3\)
c) \(\left(2x-1\right)^3=\left(-8\right)\)
\(\left(2x-1\right)^3=\left(-2\right)^3\)
\(2x-1=\left(-2\right)\)
\(2x=\left(-2\right)+1\)
\(2x=-1\)
\(x=-\frac{1}{2}\)
d) \(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
\(\left(x+\frac{1}{2}\right)^2=\left(\frac{1}{4}\right)^2\)
\(x+\frac{1}{2}=\frac{1}{4}\)
\(x=\frac{1}{4}-\frac{1}{2}\)
\(x=-\frac{1}{4}\)
a) \(\left(x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
b) \(\left(x-2\right)^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)
c) \(\left(2x-1\right)^2=-8\)
\(\Leftrightarrow2x-1=-2\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=-\frac{1}{2}\)
d) \(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=-\frac{1}{4}\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{cases}}}\)
a) \(\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
b) Vì \(\left(x-2\right)^2=1\Rightarrow\left\{{}\begin{matrix}x-2=2\\x-2=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)
Vậy x = 4 hoặc x = 0
c) Vì \(\left(2.x-1\right)^3=-8\Rightarrow2.x-1=-2\Rightarrow2.x=-1\Rightarrow x=-\dfrac{1}{2}\)
d) Vì \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\Rightarrow\left\{{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{4}\\x+\dfrac{1}{2}=-\dfrac{1}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{4}\\x=-\dfrac{3}{4}\end{matrix}\right.\)
a) \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
b) \(\left(x-2\right)^2=1\Leftrightarrow\left\{{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
c) \(\left(2x-1\right)^3=-8\Leftrightarrow2x-1=-2\Leftrightarrow2x=-1\Leftrightarrow x=\dfrac{-1}{2}\) d) \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\Leftrightarrow x=\dfrac{-1}{4}\)
a) \(\left(x-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=\frac{1}{2}\end{cases}}\)
b) \(\left(x-2\right)^2=1\)
\(\Leftrightarrow\left(x-2\right)^2-1=0\)
\(\Leftrightarrow\left(x-2-1\right)\left(x-2+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)
c) \(\left(2x-1\right)^3=-8\)
\(\Leftrightarrow2x-1=-2\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
d) \(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
\(\Rightarrow x+\frac{1}{2}=\frac{1}{4}\)
\(\Rightarrow x=-\frac{1}{4}\)
a) x3 = -27
<=> -33 = -27
=> x = -3
b) (2x - 1)3 = 8
<=> 8x3 - 12x2 + 6x - 1 = 8
<=> 8x3 - 12x2 + 6x - 1 - 8 = 0
<=> (2x - 3)(4x2 + 3) = 0
<=> 2x - 3 = 0 hoặc 4x2 + 3 = 0
2x = 0 + 3
2x = 3
x = 3/2
=> x = 3/2
c) x3 = x5
<=> x3 - x5 = 0
<=> x3(1 - x2) = 0
<=> x = 0; 1; -1
=> x = 0; 1; -1
d) (x - 2)2 = 16
<=> (x - 2)2 = 42
<=> x - 2 = 4 hoặc x - 2 = -4
x = 4 + 2 x = -4 + 2
x = 6 x = -2
=> x = 6; -2
g) (2x - 3)2 = 9
<=> (2x - 3)2 = 32
<=> 2x - 3 = 3 hoặc 2x - 3 = -3
2x = 3 + 3 2x = -3 + 3
2x = 6 2x = 0
x = 3 x = 0
=> x = 3; 0
y) 3x3 - 4x = 0
<=> x(3x - 4) = 0
<=> x = 0 hoặc 3x - 4 = 0
3x = 0 + 4
3x = 4
x = 4/3
\(a,5^x+5^{x+2}=650\Leftrightarrow5^x+5^x+5^2=650\Leftrightarrow5^x.26=650\Leftrightarrow5^x=5^2\Leftrightarrow x=2\) x=2
b,Với x=0 khi đó 3^0-1+5.3^0-1=2 (loại)
Với x=1 khi đó 3^1+5.3^1=18 (loại)
Với x=2 khi đó 5.3^x-1>16 (loại)
Vậy không có x thỏa mãn
1/ 2x = 45.46
=> 2x = 45 + 6
=> 2x = 411
=> 2x = (22)11
=> 2x = 222
=> x = 22
vậy_
2/ 2x = 46.163
=> 2x = (22)6.(24)3
=> 2x = 212.212
=> 2x = 212 + 12
=> 2x = 224
=> x = 24
3/ 2x = 45.162
=> 2x = (22)5.(24)2
=> 2x = 210.28
=> 2x = 210 + 8
=> 2x = 218
=> x = 18
vậy_
\(\frac{1}{2^x}=4^5.4^3=4^{5+3}=4^8\)
\(\Rightarrow1=4^8.2^x=2^{2.8+x}=2^{16+x}\)
ta có 1 < 21 => 216+x < 21
=> 216+x = 20
=> 16+x=0
=> x= -16
a) \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\) vậy \(x=\dfrac{1}{2}\)
b) \(\left(x-2\right)^2=1\Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{1}\\x-2=-\sqrt{1}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
vậy \(x=3;x=1\)
c) \(\left(2x-1\right)^3=-8\Leftrightarrow2x-1=\sqrt[3]{-8}=-2\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=\dfrac{-1}{2}\) \(\) vậy \(x=\dfrac{-1}{2}\)
d) \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\sqrt{\dfrac{1}{16}}\\x+\dfrac{1}{2}=-\sqrt{\dfrac{1}{16}}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{4}\\x+\dfrac{1}{2}=-\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-3}{4}\end{matrix}\right.\) vậy \(x=\dfrac{-1}{4};x=\dfrac{-3}{4}\)
a.
\(\left(x-\frac{1}{2}\right)^2=0\)
\(x-\frac{1}{2}=0\)
\(x=\frac{1}{2}\)
b.
\(\left(x-2\right)^2=1\)
\(x-2=\pm1\)
TH1:
\(x-2=1\)
\(x=1+2\)
\(x=3\)
TH2:
\(x-2=-1\)
\(x=-1+2\)
\(x=1\)
Vậy x = 3 hoặc x = 1
c.
\(\left(2x-1\right)^3=-8\)
\(\left(2x-1\right)^3=\left(-2\right)^3\)
\(2x-1=-2\)
\(2x=-2+1\)
\(2x=-1\)
\(x=-\frac{1}{2}\)
d.
\(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
\(\left(x+\frac{1}{2}\right)^2=\left(\pm\frac{1}{4}\right)^2\)
\(x+\frac{1}{2}=\pm\frac{1}{4}\)
TH1:
\(x+\frac{1}{2}=\frac{1}{4}\)
\(x=\frac{1}{4}-\frac{1}{2}\)
\(x=\frac{1}{4}-\frac{2}{4}\)
\(x=-\frac{1}{4}\)
TH2:
\(x+\frac{1}{2}=-\frac{1}{4}\)
\(x=-\frac{1}{4}-\frac{1}{2}\)
\(x=-\frac{1}{4}-\frac{2}{4}\)
\(x=-\frac{3}{4}\)
Vậy \(x=-\frac{1}{4}\) hoặc \(x=-\frac{3}{4}\)