K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

Đang cần giúp ai đang lướt  thì xin nhiệt tình giúp đỡ  với ạ..

6 tháng 8 2017

a)Để C=\(\frac{5}{x-2}\) có GTNN \(\Rightarrow\) x-2=ƯCLN(5) \(\Rightarrow\) x-2=5 =>x=7

16 tháng 5 2016

a;Ta có:

 (x-1)^2 lớn hơn hoặc bằng 0

(x-1)^2 +2008 lớn hơn hoặc bằng 2008 

Đẻ A nhỏ nhất thì 

(x-1)^2 +2008 =2008

(x-1)^2 =0

x-1=0

x=1

Vậy A nhỏ nhất bằng 2008 khi x=1

b,Ta có:

      |x-4| lớn hơn hoặc bằng 0

|x-4|+1996 lớn hơn hoặc bằng 1996

Để B nhỏ nhất  thì 

   |x-4|+1996=1996

|x-4|=0

x=4

Vậy B nhỏ nhất bằng 1996 khi x=4

16 tháng 5 2016

c, Để C nhỏ nhất thì x-2 lớn nhất âm

5 chia hết cho x-2

=>x-2=-1

x=1

Vậy C nhỏ nhất bằng -5 khi x=1

d, Ta có:

   \(\frac{x+5}{x-4}=1+\frac{9}{x-4}\)

Để D nhỏ nhất thì 9 chia hết cho x-4 và x-4 lớn nhất âm

x-4=-1

x=3

Vậy D nhỏ nhất bằng -8 khi x=3

16 tháng 4 2017

a, Ta có: \(\left|x+4\right|\ge0\)

=> B = |x + 4| + 1996 \(\ge\)1996

Dấu "=" xảy ra <=> x + 4 = 0 <=> x = -4

Vậy GTNN của B là 1996 tại x = -4

b, Để C có giá trị nhỏ nhất 

=> x - 2 phải lớn nhất 

=> x - 2 = 5 => x = 7

=> GTNN của C = \(\frac{5}{x-2}=\frac{5}{7-2}=\frac{5}{5}=1\)

Vậy GTNN của C = 1 tại x = 7

c, Ta có: \(D=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\)

Để D có giá trị nhỏ nhất

=> \(\frac{9}{x-4}\)là số nhỏ nhất

=> x - 4 phải lớn nhất 

=> x - 4 = 9 => x = 13

=> GTNN của D = \(\frac{x+5}{x-4}=\frac{13+5}{13-4}=\frac{18}{9}=2\)

Vậy GTNN của D = 2 tại x = 13

29 tháng 5 2017

a) Ta có: \(x^4\ge0\) \(\forall x\)

             \(\left(y-2\right)^2\ge0\) \(\forall y\)

          \(\Rightarrow A\ge-8\). Dấu = khi <=> \(\hept{\begin{cases}x^4=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

Vậy min A = -8 <=> \(\hept{\begin{cases}x=0\\y=2\end{cases}}\)

29 tháng 5 2017

B= /x-3/ + /x-7/

Ta có: /x-3/ \(\ge0\forall x\)

         /x-7/ \(\ge0\)  \(\forall x\)

  => B \(\ge0\). Dấu = khi <=> /x-3/ = 0 hoặc /x-7/=0

                                       <=> x=3 hoặc x=7

Vậy B=0 <=> x=3 hoặc x=7

Dạng 3 :

a) 3x - 10 = 2x + 13

=> 3x - 2x = 13 - 10

=> x = 3

b) x + 12 = -5 - x

=> x + x = -5 - 12

=> 2x = -17

=> x = -8,5

c) x + 5 = 10 - x 

=> x + x = 10 - 5

=> 2x = 5

=> x = 2,5

d) 6x + 23 = 2x - 12

=> 2x - 6x = 23 + 12

=> -4x = 35

=> x = -8,75

e) 12 - x = x + 1

=> x + x = 12 - 1

=> 2x = 11

=> x = 5,5

f) 14 + 4x = 3x + 20

=> 4x - 3x = 20 - 14

=> x = 6

19 tháng 8 2017

a) \(C=\frac{5}{x-2}\)

=> x-2 thuộc Ư(5) = {-1,-5,1,5}

Ta có bảng :

x-2-1-515
x1-337

Vậy x = {-3,1,3,7}

b) Ta có : \(\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\)

=> x-4 thuộc Ư(9) = {-1,-3,-9,1,3,9}

Ta có bảng :

x-4-1-3-9139
x31-55713

Vậy x = {-5,1,3,5,7,13}

16 tháng 9 2018

1 Giải :

\(\frac{3x+7}{x-1}\)là phân số <=> x - 1 \(\ne\)0 => x \(\ne\)1

Ta có : \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+8}{x-1}=3+\frac{8}{x-1}\)

Để \(\frac{3x+7}{x-1}\)là số nguyên thì 8 \(⋮\)x - 1 => x - 1 \(\in\)Ư(1; -1; 2; -2; 4; -4; 8; -8}

Lập bảng :

x - 1 1 -1 2 -2 4 -4 8 -8
   x 2 0 3 -1 5 -3 9 -7

Vậy x \(\in\){2; 0; 3; -1; 5; -3; 9; -7} thì \(\frac{3x+7}{x-1}\)là số nguyên

16 tháng 9 2018

Đặt \(A=\frac{3x+7}{x-1}\)

Ta có: \(A=\frac{3x+7}{x-1}=\frac{3x-3+10}{x-1}=\frac{3x-3}{x-1}+\frac{10}{x-1}=3+\frac{10}{x-1}\)

Để \(A\in Z\)thì \(\frac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\) 

Ta có bảng sau:

\(x-1\)\(1\)\(-1\)\(2\)\(-2\)\(5\)\(-5\)\(10\)\(-10\)
\(x\)\(2\)\(0\)\(3\)\(-1\)\(6\)\(-4\)\(11\)\(-9\)

Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\frac{3x+7}{x-1}\in Z\)

AH
Akai Haruma
Giáo viên
20 tháng 4 2021

d,

\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)

e,

\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)

\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)

\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)

Vậy không tồn tại $x$ thỏa mãn đề bài.

f, 

\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)

\(\Leftrightarrow 6x-3=10+6x\)

\(\Leftrightarrow 13=0\) (vô lý)

Vậy không tồn tại $x$ thỏa mãn đề bài.

AH
Akai Haruma
Giáo viên
20 tháng 4 2021

a,

$0-|x+1|=5$

$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)

Do đó không tồn tại $x$ thỏa mãn điều kiện đề.

b,

\(2-|\frac{3}{4}-x|=\frac{7}{12}\)

\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)

\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)

c, 

\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)

\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)

\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)

\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)

4 tháng 5 2017

Giải:

Để  \(C=\frac{5}{x-2}\) đạt giá trị nhỏ nhất

\(\Leftrightarrow\frac{5}{x-2}\) phải nhỏ nhất \(\Leftrightarrow x-2\) phải lớn nhất

\(\Leftrightarrow x-2=5\Leftrightarrow x=7\)

Vậy x=7