Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: \(\left|x+4\right|\ge0\forall x\)
\(\Leftrightarrow\left|x+4\right|+1996\ge1996\forall x\)
Dấu '=' xảy ra khi x=-4
Bài 2:
\(P=2010-\left(x+1\right)^{2008}\)
Ta có: \(\left(x+1\right)^{2008}\ge0\forall x\)
\(\Rightarrow2010-\left(x+1\right)^{2008}\le2010\forall x\)
\(P=2010\Leftrightarrow\left(x+1\right)^{2008}=0\Leftrightarrow x=-1\)
Vậy \(x=-1\)thì \(B_{max}=2010\)
Bài 1:
\(D=\frac{x+5}{|x-4|}\)
Ta có: \(|x-4|\ge0\forall x\)
\(\Rightarrow D=\frac{x+5}{|x-4|}=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)
Vì 1 không đổi
Nên để D đạt GTNN thì: \(\frac{9}{x-4}\)phải đạt GTLN
\(\Rightarrow x-4\)phải đạt GTLN
\(\Rightarrow x=13\)
GTNN của \(D=1+\frac{9}{x-4}=1+\frac{9}{13-4}=1+\frac{9}{9}=1+1=2\)
Vậy x=3 thì D đạt GTNN
Bài 2:
\(P=2010-\left(x+1\right)^{2008}\)
Ta có: \(\left(x+1\right)^{2008}\ge0\forall x\)
\(\Rightarrow2010-\left(x+1\right)^{2008}\le2010-0\)
\(\Rightarrow P\le2010\)
\(\Rightarrow\)GTLN của P=2010
\(\Leftrightarrow\left(x+1\right)^{2008}=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy x=-1 thì P đạt GTLN
a) \(C=\frac{5}{x-2}\)
=> x-2 thuộc Ư(5) = {-1,-5,1,5}
Ta có bảng :
x-2 | -1 | -5 | 1 | 5 |
x | 1 | -3 | 3 | 7 |
Vậy x = {-3,1,3,7}
b) Ta có : \(\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\)
=> x-4 thuộc Ư(9) = {-1,-3,-9,1,3,9}
Ta có bảng :
x-4 | -1 | -3 | -9 | 1 | 3 | 9 |
x | 3 | 1 | -5 | 5 | 7 | 13 |
Vậy x = {-5,1,3,5,7,13}
1 Giải :
\(\frac{3x+7}{x-1}\)là phân số <=> x - 1 \(\ne\)0 => x \(\ne\)1
Ta có : \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+8}{x-1}=3+\frac{8}{x-1}\)
Để \(\frac{3x+7}{x-1}\)là số nguyên thì 8 \(⋮\)x - 1 => x - 1 \(\in\)Ư(1; -1; 2; -2; 4; -4; 8; -8}
Lập bảng :
x - 1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
x | 2 | 0 | 3 | -1 | 5 | -3 | 9 | -7 |
Vậy x \(\in\){2; 0; 3; -1; 5; -3; 9; -7} thì \(\frac{3x+7}{x-1}\)là số nguyên
Đặt \(A=\frac{3x+7}{x-1}\)
Ta có: \(A=\frac{3x+7}{x-1}=\frac{3x-3+10}{x-1}=\frac{3x-3}{x-1}+\frac{10}{x-1}=3+\frac{10}{x-1}\)
Để \(A\in Z\)thì \(\frac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(5\) | \(-5\) | \(10\) | \(-10\) |
\(x\) | \(2\) | \(0\) | \(3\) | \(-1\) | \(6\) | \(-4\) | \(11\) | \(-9\) |
Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\frac{3x+7}{x-1}\in Z\)
a, Ta có: \(\left|x+4\right|\ge0\)
=> B = |x + 4| + 1996 \(\ge\)1996
Dấu "=" xảy ra <=> x + 4 = 0 <=> x = -4
Vậy GTNN của B là 1996 tại x = -4
b, Để C có giá trị nhỏ nhất
=> x - 2 phải lớn nhất
=> x - 2 = 5 => x = 7
=> GTNN của C = \(\frac{5}{x-2}=\frac{5}{7-2}=\frac{5}{5}=1\)
Vậy GTNN của C = 1 tại x = 7
c, Ta có: \(D=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\)
Để D có giá trị nhỏ nhất
=> \(\frac{9}{x-4}\)là số nhỏ nhất
=> x - 4 phải lớn nhất
=> x - 4 = 9 => x = 13
=> GTNN của D = \(\frac{x+5}{x-4}=\frac{13+5}{13-4}=\frac{18}{9}=2\)
Vậy GTNN của D = 2 tại x = 13
a) Với mọi x nguyên ta luôn có: \(\left(x-1\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\) \(\left(x-1\right)^2=0\) \(\Leftrightarrow\) \(x-1=0\) \(\Leftrightarrow\) x = 1.
Do đó \(A=\left(x-1\right)^2+2008\ge0+2008=2008\)
Vậy GTNN của A là 2008 tại x = 1.
b) Với mọi x nguyên ta luôn có \(\left|x+4\right|\ge0\)
.Dấu "=" xảy ra \(\Leftrightarrow\) \(\left|x+4\right|=0\) \(\Leftrightarrow\) \(x+4=0\) \(\Leftrightarrow\) x = -4.
Do đó \(B=\left|x+4\right|+1996\ge0+1996=1996\)
Vậy GTNN của B là 1996 tại x = -4.
Giải:
Để \(C=\frac{5}{x-2}\) đạt giá trị nhỏ nhất
\(\Leftrightarrow\frac{5}{x-2}\) phải nhỏ nhất \(\Leftrightarrow x-2\) phải lớn nhất
\(\Leftrightarrow x-2=5\Leftrightarrow x=7\)
Vậy x=7
a) A = (x - 1)2 + 12
Do (x - 1)2 \(\ge\)0 \(\forall\)x
=> (x - 1)2 + 12 \(\ge\)12 \(\forall\)x
Dấu "="xảy ra <=> x - 1 = 0 <=> x = 1
Vậy MinA = 12 khi x = 1
b) B = |x + 3| + 2020
Do |x + 3| \(\ge\)0 \(\forall\)x
=> |x + 3| + 2020 \(\ge\)2020 \(\forall\)x
Dấu "=" xảy ra <=> x + 3 = 0 <=> x = -3
Vậy MinB = 2020 khi x = -3
(c;d max hay min ?)
a) \(A=\left(x-1\right)^2+12\ge12\left(\forall x\right)\)
\("="\Leftrightarrow x=1\)
b) \(B=\left|x+3\right|+2020\ge2020\left(\forall x\right)\)
\("="\Leftrightarrow x=-3\)
c) \(C=\frac{5}{x-2}\ge\frac{5}{-1}=-5\left(\forall x\right)\)
\("="\Leftrightarrow x=1\)
d) \(D=\frac{x+5}{x-4}=1+\frac{9}{x-4}\ge1+\frac{9}{-1}=-8\left(\forall x\right)\)
\("="\Leftrightarrow x=3\)
a;Ta có:
(x-1)^2 lớn hơn hoặc bằng 0
(x-1)^2 +2008 lớn hơn hoặc bằng 2008
Đẻ A nhỏ nhất thì
(x-1)^2 +2008 =2008
(x-1)^2 =0
x-1=0
x=1
Vậy A nhỏ nhất bằng 2008 khi x=1
b,Ta có:
|x-4| lớn hơn hoặc bằng 0
|x-4|+1996 lớn hơn hoặc bằng 1996
Để B nhỏ nhất thì
|x-4|+1996=1996
|x-4|=0
x=4
Vậy B nhỏ nhất bằng 1996 khi x=4
c, Để C nhỏ nhất thì x-2 lớn nhất âm
5 chia hết cho x-2
=>x-2=-1
x=1
Vậy C nhỏ nhất bằng -5 khi x=1
d, Ta có:
\(\frac{x+5}{x-4}=1+\frac{9}{x-4}\)
Để D nhỏ nhất thì 9 chia hết cho x-4 và x-4 lớn nhất âm
x-4=-1
x=3
Vậy D nhỏ nhất bằng -8 khi x=3