Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x+1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{0;-2;2;-4\right\}\)
⇔x+1∈{1;−1; 3 ;−3}⇔x+1∈{1 ;− 1 ; 3 ;−3}
hay x∈{0;−2; 2;−4}
\(y=\dfrac{2x-3}{x-2}=\dfrac{2\left(x-2\right)+1}{x-2}=2+\dfrac{1}{x-2}\in Z\\ \Leftrightarrow x-2\inƯ\left(1\right)=\left\{-1;1\right\}\\ \Leftrightarrow x\in\left\{1;3\right\}\)
a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)
Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow11⋮4x-5\)
Vì \(x\in Z\) nên \(4x-5\in Z\)
\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)
Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).
b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)
Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)
4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)
Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất
\(\Rightarrow4-x=1\Rightarrow x=3\)
\(\Rightarrow A=\dfrac{5}{4-3}=5\)
Vậy MaxA = 5 tại x = 3
c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).
Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)
Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất
\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất
Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\)
x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)
Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất
\(\Rightarrow x-3=-1\Rightarrow x=2\)
\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)
Vậy MaxB = -6 tại x = 2.
Mình làm sai câu a...
Ta có: \(M=\dfrac{8x+1}{4x-1}=\dfrac{8x-2+3}{4x-1}=\dfrac{2\left(4x-1\right)+3}{4x-1}=2+\dfrac{3}{4x-1}\)
Để M nhận giá trị nguyên thì \(2+\dfrac{3}{4x-1}\) nhận giá trị nguyên
\(\Rightarrow\dfrac{3}{4x-1}\) nhận giá trị nguyên
Vì \(4x-1\in Z\) nên \(4x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{\pm0,5;0;1\right\}\)
Vậy \(x\in\left\{0;1\right\}\) thỏa mãn \(x\in Z\).
\(a,\Rightarrow2x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Rightarrow x\in\left\{-2;1;2;5\right\}\\ b,=\dfrac{2\left(x-1\right)+1}{x-1}=2+\dfrac{1}{x-1}\in Z\\ \Rightarrow x-1\inƯ\left(1\right)=\left\{-1;1\right\}\\ \Rightarrow x\in\left\{0;2\right\}\\ c,\Rightarrow x^2-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow x^2\in\left\{2;4;8\right\}\\ \Rightarrow x^2=4\left(x\in Z\right)\\ \Rightarrow x=\pm2\)
Để \(A\) là số nguyên thì \(\left(6x-4\right)⋮\left(2x+1\right)\)
Ta có :
\(6x-4=6x+3-7=3\left(2x+1\right)-7\) chia hết cho \(2n+1\) \(\Rightarrow\) \(\left(-7\right)⋮\left(2x+1\right)\) \(\Rightarrow\) \(\left(2x+1\right)\inƯ\left(-7\right)\)
Mà \(Ư\left(-7\right)=\left\{1;-1;7;-7\right\}\)
Suy ra :
\(2x+1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(x\) | \(0\) | \(-1\) | \(3\) | \(-4\) |
Vậy \(x\in\left\{0;-1;3;-4\right\}\)
Năm mới zui zẻ nhá ^^
\(A=\frac{6x-4}{2x+1}=\frac{6x+3-7}{2x+1}=\frac{3\left(2x+1\right)-7}{2x+1}=3-\frac{7}{2x+1}\)
Để \(3-\frac{7}{2x+1}\) là số nguyên <=> \(\frac{7}{2x+1}\) là số nguyên
=> 2x + 1 \(\in\) Ư(7) = { - 7; - 1; 1; 7 }
Ta có : 2x + 1 = - 7 <=> 2x = - 8 => x = - 4 (TM)
2x + 1 = - 1 <=> 2x = - 2 => x = - 1 (TM)
2x + 1 = 1 <=> 2x = 0 => x = 0 (TM)
2x + 1 = 7 <=> 2x = 6 => x = 3 (TM)
Vậy x = { - 4; - 1; 0; 3 }
\(\Leftrightarrow6x-4=\left(6x+3\right)-7\)
Để \(A\in Z\Leftrightarrow\left(6x+3\right)-7⋮2x+1\)
Mà \(6x+3⋮2x+4\Rightarrow7⋮2x+1\Rightarrow2x+1\inƯ\left(7\right)\)
\(\RightarrowƯ\left(7\right)=\left(7;1;-1;-7\right)\)
Nếu \(2x+1=7\Rightarrow x=3\)
Nếu \(2x+1=1\Rightarrow x=0\)
Nếu \(2x+1=-1\Rightarrow x=-1\)
Nếu \(2x+1=-7\Rightarrow x=-4\)
1 - 2x = -(2x - 1)
= -(2x + 6 - 7)
= -(2x + 6) + 7
= -2(x + 3) + 7
Để B nguyên thì (1 - 2x) ⋮ (x + 3)
⇒ 7 ⋮ (x + 3)
⇒ x + 3 ∈ Ư(7) = {-7; -1; 1; 7}
⇒ x ∈ {-10; -4; -2; 4}
\(\frac{2x+4}{x+3}=\frac{2x+6-2}{x+3}=2-\frac{2}{x+3}\inℤ\Leftrightarrow\frac{2}{x+3}\inℤ\)
mà \(x\)là số nguyên nên \(x+3\inƯ\left(2\right)=\left\{-2,-1,1,2\right\}\)
\(\Leftrightarrow x\in\left\{-5,-4,-2,-1\right\}\).