Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`( 3x + 2 )/( x + 2 )` nguyên `.`
`=> 3x + 2` \(\vdots\) `x+2`
`=> 3x + 6 - 4` \(\vdots\) `x+2`
`=> 3( x + 2 )-4` \(\vdots\) `x+2`
Do `3( x + 2 )` \(\vdots\) `x+2` mà để `3( x + 2 )-4` \(\vdots\) `x+2`
`=> -4` \(\vdots \) `x+2` hay `x+2 in Ư_(4) = { +-1 ; +-2 ; +-4 }`
Do `x in ZZ^-`
`=> x + 2 in ZZ` `; x + 2 < 2`
`=> x + 2 in { +-1 ; -2 ; -4 }`
`=> x in { -1 ; -3 ; -4 ; -6 }`
Vậy `x in { -1;-3;-4;-6}`
a)để A có giá trị nguyên
=>-3 chia hết 2x-1
=>2x-1\(\in\){-3,-1,1,3}
=>2x-1\(\in\){-7;-3;1;5}
b)để B có giá trị nguyên
=>4x+5 chia hết 2x-1
<=>[2(2x-1)+7] chia hết 2x-1
=>2x-1\(\in\){1,-1,7,-7}
=>x\(\in\){1;-3;13;-15}
c tương tự
2. Để A có giá trị nguyên => 11 chia hết 2n - 3
=> 2n-3 thuộc Ư(11) = { 1 ; -1 ; 11; -11}
=> 2n thuộc { 4 ; 2 ; 14 ; -8}
=> n thuộc { 2 ; 1 ; 7 ; -4}
Mà n là số tự nhiên => n = 1 ; 2; 7 (tm)
3.\(\frac{-3x-15}{-2x}=3\)=> -3x - 15 = -6x
=> -3x + 6x = 15
=> 3x = 15
=> x = 5 (tm)
4. \(\frac{2}{x+1}=\frac{x+1}{2}\)=> (x+1)2 = 4
=> (x + 1)2 = (+-2)2
=> x + 1 = +-2
=> x = 1 ; -3 (tm)
Vì tích đó có chứa các thừa số 20;30;40;50;60;70;80;90 nên tích 12.14.16...96.98 có chữ số tận cùng là 0
Vậy C có chữ số tận cùng là 0
Ta có \(\frac{6x+1}{2x-1}=\frac{3.\left(2x-1\right)+4}{2x-1}=3+\frac{4}{2x-1}\)\(\left(x\ne\frac{1}{2}\right)\)
Vì \(3\in Z\)nên để \(\frac{6x+1}{2x-1}\in Z\)thì \(\frac{4}{2x-1}\in Z\)
Hay \(2x-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm3\right\}\)
Vì \(2x-1\)là số lẻ nên \(2x-1\in\left\{\pm1;\pm3\right\}\)
Giải tiếp nha
\(A=\frac{6x+1}{2x-1}=\frac{6x-3+4}{2x-1}\)
\(=3+\frac{4}{2x-1}\)
Để biểu thức \(A=3+\frac{4}{2x-1}\)có giá trị nguyên thì : \(\frac{4}{2x-1}\)phải có giá trị nguyên
\(\Rightarrow2x-1\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow2x\in\left\{-3;-1;0;2;3;5\right\}\)
\(\Rightarrow x\in\left\{-\frac{3}{2};-\frac{1}{2};0;1;\frac{3}{2};\frac{5}{2}\right\}\)
Do x là số nguyên , nên : \(x\in\left\{0;1\right\}\)
giúp mình vs
Lời giải:
Để $A$ nhận giá trị nguyên thì $2x-3\vdots 2-3x$
$\Rightarrow 3(2x-3)\vdots 2-3x$
$\Rightarrow 6x-9\vdots 2-3x$
$\Rightarrow 2(3x-2)-5\vdots 2-3x$
$\Rightarrow 5\vdots 2-3x$
$\Rightarow 2-3x\in\left\{\pm 1; \pm 5\right\}$
$\Rightarrow x\in\left\{\frac{1}{3}; 1; -1; \frac{7}{3}\right\}$
Vì $x$ nguyên nên $x\in\left\{1; -1\right\}$
Thử lại thấy thỏa mãn.