\(\left(x^2-8\right)^2+36\)là số nguyên tố

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

\(A=\left(x^2-8\right)^2+36=\left(x^2-6x+10\right)\left(x^2+6x+10\right)\)

Điều kiện cần để A nguyên tố là:

\(\orbr{\begin{cases}x^2-6x+10=1\\x^2+6x+10=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

Điều kiện đủ: Thế lại A ta được

\(A=37\) vậy thỏa bài toán

7 tháng 7 2017

thiếu đề!!