Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu này mik vừa làm sáng ngày ne
ta đặt \(\sqrt{x^2-2014}=a;\sqrt{y^2-2014}=b;\sqrt{z^2-2014}=c\)
ta có \(ab+bc+ca=2014\Rightarrow ab+bc+ca+a^2=x^2-2014+2014=x^2\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)=x^2\)
tương tự ta có \(\left(b+c\right)\left(b+a\right)=y^2;\left(c+a\right)\left(c+b\right)=z^2\)
nhân cả 3 vào ta có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=xyz\)
=> \(\hept{\begin{cases}\left(a+b\right)z^2=xyz\\\left(b+c\right)x^2=xyz\\\left(c+a\right)y^2=xyz\end{cases}\Rightarrow\hept{\begin{cases}a+b=\frac{xy}{z}\\b+c=\frac{yz}{x}\\c+a=\frac{zx}{y}\end{cases}}}\)
cậu nhân tung A ra rồi thay \(\frac{xy}{z};\frac{yz}{x};\frac{zx}{y}\) như vừa tính vào thì cậu sẽ ra kết quả là A=4028
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-2014}=a\left(a\ge0\right)\\\sqrt{y^2-2014}=b\left(b\ge0\right)\\\sqrt{z^2-2014}=c\left(c\ge0\right)\end{matrix}\right.\)
\(\Rightarrow ab+bc+ca=2014\)
Ta có: \(\sqrt{x^2-2014}=a\)
\(\Leftrightarrow x^2-2014=a^2\)
\(\Rightarrow x^2=a^2+2014=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)
Tương tự, ta có:
\(y^2=\left(b+c\right)\left(b+a\right)\)
\(z^2=\left(c+a\right)\left(c+b\right)\)
Xét \(A=xyz\left(\dfrac{\sqrt{x^2-2014}}{x^2}+\dfrac{\sqrt{y^2-2014}}{y^2}+\dfrac{\sqrt{z^2-2014}}{z^2}\right)\)
\(=\sqrt{\left(a+b\right)\left(a+c\right)}\times\sqrt{\left(b+c\right)\left(b+c\right)}\times\sqrt{\left(c+a\right)\left(c+b\right)}\)
\(\times\left[\dfrac{a}{\left(a+b\right)\left(a+c\right)}+\dfrac{b}{\left(b+c\right)\left(b+a\right)}+\dfrac{c}{\left(c+a\right)\left(c+b\right)}\right]\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\times\dfrac{a\left(b+c\right)\times b\left(c+a\right)\times c\left(b+a\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)
\(=2\left(ab+bc+ac\right)=4028\)
Ta có \(\left(x+y+z\right)^2-x^2-y^2-z^2=a^2-b\Rightarrow2\left(xy+yz+zx\right)=2048\Rightarrow xy+yz+zx=2014\)
với xy+yz+zx=2014, thay vào, ta có A=\(\sum x\sqrt{\dfrac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{x^2+xy+yz+zx}}=\sum x\sqrt{\dfrac{\left(y+z\right)^2\left(y+x\right)\left(z+x\right)}{\left(x+z\right)\left(x+y\right)}}=\sum x\left(y+z\right)=2\left(xy+yz+zx\right)=2048\)
đk của x,y,z là x,y,z\(\ge\sqrt{2014}\) nhé, xin lỗi chép sót đề