Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>4x-6-9=5-3x-3
=>4x-15=-3x+2
=>7x=17
hay x=17/7
b: \(\Leftrightarrow\dfrac{2}{3x}-\dfrac{1}{4}=\dfrac{4}{5}-\dfrac{7}{x}+2\)
=>2/3x+21/3x=4/5+2+1/4=61/20
=>23/3x=61/20
=>3x=23:61/20=460/61
hay x=460/183
1: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^6\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{18}\)
=>4x=18
hay x=9/2
2: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^{36}\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{108}\)
=>4x=108
hay x=27
3: \(\left(\dfrac{1}{81}\right)^x=\left(\dfrac{1}{27}\right)^4\)
\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{4x}=\left(\dfrac{1}{3}\right)^{12}\)
=>4x=12
hay x=3
Bài 2:
\(\left(\dfrac{2}{5}\right)^x>\left(\dfrac{5}{2}\right)^{-3}.\left(\dfrac{-2}{5}\right)^2\)
\(\Rightarrow\left(\dfrac{2}{5}\right)^x>\left(\dfrac{2}{5}\right)^3.\left(\dfrac{2}{5}\right)^2\)
\(\Rightarrow\left(\dfrac{2}{5}\right)^x>\left(\dfrac{2}{5}\right)^5\)
Vì \(\dfrac{2}{5}\ne\pm1;\dfrac{2}{5}\ne0\) nên \(x>5\)
Vậy \(x>5\) thoả mãn yêu cầu đề bài.
Chúc bạn học tốt!!!
Bài 1:
\(C=\left(\dfrac{1}{2^2-1}\right)\left(\dfrac{1}{3^2-1}\right).....\left(\dfrac{1}{100^2-1}\right)\)
\(C=\left(\dfrac{1}{\left(2-1\right)\left(2+1\right)}\right)\left(\dfrac{1}{\left(3-1\right)\left(3+1\right)}\right).....\left(\dfrac{1}{\left(100-1\right)\left(100+1\right)}\right)\)
\(C=\dfrac{1}{1.3}\dfrac{1}{2.4}.....\dfrac{1}{99.101}=\dfrac{1}{101!}\)
Chúc bạn học tốt!!!
\(\Leftrightarrow\left(\dfrac{13}{4}-x\right)\cdot\dfrac{101}{25}-\dfrac{1213}{100}=2\cdot\left[\left(x-\dfrac{10}{7}\right)\cdot\dfrac{49}{50}+\dfrac{2}{5}\right]\)
\(\Leftrightarrow\left(\dfrac{13}{4}-x\right)\cdot\dfrac{101}{25}=\dfrac{49}{25}\left(x-\dfrac{10}{7}\right)+\dfrac{4}{5}+\dfrac{1213}{100}\)
\(\Leftrightarrow\dfrac{1313}{100}-\dfrac{101}{25}x=\dfrac{49}{25}x-\dfrac{490}{175}+\dfrac{1293}{100}\)
=>-6x=13/5
hay x=-13/30
a: \(\dfrac{x+1}{5}+\dfrac{x+1}{6}=\dfrac{x+1}{7}+\dfrac{x+1}{8}\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}-\dfrac{1}{8}\right)=0\)
=>x+1=0
hay x=-1
b: \(\Leftrightarrow\left(\dfrac{x-1}{2009}-1\right)+\left(\dfrac{x-2}{2008}-1\right)=\left(\dfrac{x-3}{2007}-1\right)+\left(\dfrac{x-4}{2006}-1\right)\)
=>x-2010=0
hay x=2010
c: \(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\dfrac{x}{\left(x+2\right)\left(x+17\right)}=\dfrac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}\)
=>x=15
a: \(A=\dfrac{1.3-2.6}{2.6}-\dfrac{5}{6}:2=\dfrac{-1}{2}-\dfrac{5}{12}=\dfrac{-11}{12}\)
\(B=\left(\dfrac{47}{8}-\dfrac{9}{4}-\dfrac{1}{2}\right):\dfrac{75}{26}=\dfrac{47-18-4}{8}\cdot\dfrac{26}{75}=\dfrac{25}{75}\cdot\dfrac{26}{8}=\dfrac{13}{12}\)
b: Để A<x<B thì -11/12<x<13/12
mà x là số nguyên
nên \(x\in\left\{0;1\right\}\)
a, Ta có: \(\left(x-\dfrac{1}{2}\right)^2\ge0\)
\(\Leftrightarrow A=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu " = " khi \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(MIN_A=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)
b, Để B lớn nhất thì \(\left(x-\dfrac{2}{3}\right)^2+9\) nhỏ nhất
Ta có: \(\left(x-\dfrac{2}{3}\right)^2+9\ge9\)
\(\Leftrightarrow B=\dfrac{4}{\left(x-\dfrac{2}{3}\right)^2+9}\le\dfrac{4}{9}\)
Dấu " = " khi \(\left(x-\dfrac{2}{3}\right)^2=0\Leftrightarrow x=\dfrac{2}{3}\)
Vậy \(MAX_B=\dfrac{4}{9}\) khi \(x=\dfrac{2}{3}\)
B = .................
Xét thừa số 63.1,2 - 21.3,6 = 0 nên B = 0
\(C=\left|\dfrac{4}{9}-\left(\dfrac{\sqrt{2}}{2}\right)^2\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{\dfrac{2}{3}-\dfrac{4}{5}-\dfrac{6}{7}}\right|\)
\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{2\left(\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}\right)}\right|\)
\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{1}{2}\right|=\dfrac{1}{18}+\dfrac{9}{10}=\dfrac{43}{45}\)
Mình làm câu 1,2 trước, câu 3 sau
Câu 1:
\(\sqrt{x^2}=0\)
=> \(\left(\sqrt{x^2}\right)^2=0^2\)
\(\Leftrightarrow x^2=0\Leftrightarrow x=0\)
Câu 2:
\(A=\left(0,75-0,6+\dfrac{3}{7}+\dfrac{3}{12}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+2,75-2,2\right)\)
\(A=\left(\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)
\(A=3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)\cdot11\left(\dfrac{1}{7}+\dfrac{1}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)
\(A=33\cdot\dfrac{491}{1820}\cdot\dfrac{221}{420}=\dfrac{3580863}{764400}\)
a) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{1}{4}\)
\(x=\dfrac{1}{4}-\dfrac{2}{5}\)
\(x=\dfrac{-3}{20}\)
vậy \(x=\dfrac{-3}{20}\)
b) \(\left|2x-1\right|=23\)
\(2x-1=\pm23\)
+) \(2x-1=23\Rightarrow2x=24\Rightarrow x=12\)
+) \(2x-1=-23\Rightarrow2x=-22\Rightarrow x=-11\)
vậy \(x\in\left\{-11;12\right\}\)
c) Xin sửa lại đề:
\(\sqrt{x} = 6\)
=> x = 62
x = 36
d) \(\frac{x}{4}=\frac{12}{18}\)
=> \(x = \frac{4.12}{18}=\frac{8}{3}\)
\(\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{3}=\dfrac{23}{12}\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{23}{12}+\dfrac{1}{3}=\dfrac{9}{4}\\ \Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{3}{2}\\x-\dfrac{1}{2}=-\dfrac{3}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}+\dfrac{1}{2}=2\\x=-\dfrac{3}{2}+\dfrac{1}{2}=-1\end{matrix}\right.\)
\(\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{3}=\dfrac{23}{12}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{23}{12}+\dfrac{1}{3}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{9}{4}=\left(\dfrac{3}{2}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{3}{2}\\x-\dfrac{1}{2}=-\dfrac{3}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)