Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,-\frac{3}{2}-2x+\frac{3}{4}=-2\)
=> \(-\frac{3}{2}+\left(-2x\right)+\frac{3}{4}=-2\)
=> \(\left(-\frac{3}{2}+\frac{3}{4}\right)+\left(-2x\right)=-2\)
=> \(-\frac{3}{4}+\left(-2x\right)=-2\)
=> \(-2x=-2-\left(-\frac{3}{4}\right)=-\frac{5}{4}\)
=> \(x=-\frac{5}{4}:\left(-2\right)=\frac{5}{8}\)
Vậy \(x\in\left\{\frac{5}{8}\right\}\)
\(b,\left(\frac{-2}{3}x-\frac{3}{4}\right)\left(\frac{3}{-2}-\frac{10}{4}\right)=\frac{2}{5}\)
=> \(\left(-\frac{2}{3}x-\frac{3}{4}\right).\left(-4\right)=\frac{2}{5}\)
=> \(-\frac{2}{3}x-\frac{3}{4}=\frac{2}{5}:\left(-4\right)=-\frac{1}{10}\)
=> \(-\frac{2}{3}x=-\frac{1}{10}+\frac{3}{4}=\frac{13}{20}\)
=> \(x=\frac{13}{20}:\left(-\frac{2}{3}\right)=-\frac{39}{40}\)
Vậy \(x\in\left\{-\frac{39}{40}\right\}\)
\(c,\frac{x}{2}-\left(\frac{3x}{5}-\frac{13}{5}\right)=-\left(\frac{7}{5}+\frac{7}{10}x\right)\)
=> \(\frac{x}{2}-\frac{3x}{5}+\frac{13}{5}=-\frac{7}{5}-\frac{7}{10}x\)
=> \(10.\frac{x}{2}-10.\frac{3x}{5}+10.\frac{13}{5}=10.\frac{-7}{5}-10.\frac{7}{10}x\)
( chiệt tiêu )
=> \(5x-6x+26=-14-7x\)
=> \(-x+26=-14-7x\)
=> \(-x+7x=-14-26\)
=> \(6x=-40\)
=> \(x=-40:6=\frac{20}{3}\)
Vậy \(x\in\left\{\frac{20}{3}\right\}\)
\(d,\frac{2x-3}{3}+\frac{-3}{2}=\frac{5-3x}{6}-\frac{1}{3}\)
=> \(6.\frac{2x-3}{3}+6.\frac{-3}{2}=6.\frac{5-3x}{6}-6.\frac{1}{3}\)
( chiệt tiêu )
=> \(2\left(2x-3\right)-9=5-3x-2\)
=> \(4x-6-9=3-3x\)
=> \(4x-15=3-3x\)
=> \(4x+3x=3+15\)
=> \(7x=18\)
=> \(x=18:7=\frac{18}{7}\)
Vậy \(x\in\left\{\frac{18}{7}\right\}\)
\(e,\frac{2}{3x}-\frac{3}{12}=\frac{4}{x}-\left(\frac{7}{x}.2\right)\)
ĐKXĐ : \(x\ne0\)
=> \(\frac{2}{3x}-\frac{1}{4}=\frac{4}{x}-\frac{14}{x}\)
=> \(\frac{2}{3x}-\frac{4}{x}+\frac{14}{x}=\frac{1}{4}\)
=> \(\frac{2}{3x}-\frac{12}{3x}+\frac{42}{3x}=\frac{1}{4}\)
=> \(\frac{32}{3x}=\frac{1}{4}\)
=> \(3x=32.4:1=128\)
=> \(x=128:3=\frac{128}{3}\)
Vậy \(x\in\left\{\frac{128}{3}\right\}\)
\(k,\frac{13}{x-1}+\frac{5}{2x-2}-\frac{6}{3x-3}\)
ĐKXĐ :\(x\ne1;\)
=> \(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}-\frac{6}{3\left(x-1\right)}\)
=> \(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}-\frac{1}{x-1}\)
=> \(\frac{2.13}{2\left(x-1\right)}+\frac{5}{2\left(x-1\right)}-\frac{2.1}{2.\left(x-1\right)}\)
=> \(\frac{26+5-2}{2\left(x-1\right)}\)
=> \(\frac{29}{2\left(x-1\right)}\)
\(m,\left(\frac{3}{2}-\frac{2}{-5}\right):x-\frac{1}{2}=\frac{3}{2}\)
=> \(\frac{19}{10}:x-\frac{1}{2}=\frac{3}{2}\)
=> \(\frac{19}{10}:x=\frac{3}{2}+\frac{1}{2}=2\)
=> \(x=\frac{19}{10}:2=\frac{19}{20}\)
Vậy \(x\in\left\{\frac{19}{20}\right\}\)
\(n,\left(\frac{3}{2}-\frac{5}{11}-\frac{3}{13}\right)\left(2x-1\right)=\left(\frac{-3}{4}+\frac{5}{22}+\frac{3}{26}\right)\)
=> \(\frac{233}{286}\left(2x-1\right)=-\frac{233}{572}\)
=> \(2x-1=-\frac{233}{572}:\frac{233}{286}=-\frac{1}{2}\)
=> \(2x=-\frac{1}{2}+1=\frac{1}{2}\)
=> \(x=\frac{1}{2}:2=\frac{1}{4}\)
Vậy \(x\in\left\{\frac{1}{4}\right\}\)
\(a,\frac{15^3.\left(-5\right)^4}{\left(-3\right)^5.5^6}\)\(=\frac{3^3.5^3}{\left(-3\right)^5.5^2}\)\(=-\frac{5}{\left(3\right)^2}=-\frac{5}{9}\)
\(b,\frac{6^3.2.\left(-3\right)^2}{\left(-2\right)^9.3^7}\)\(=-\frac{6^3}{2^8.3^5}\)\(=-\frac{2^3.3^3}{2^8.3^5}\)\(=-\frac{1}{2^5.3^2}=-\frac{1}{288}\)
\(c,\frac{3^6.7^2-3^7.7}{3^7.21}\)\(=\frac{3^6.7\left(7-3\right)}{3^7.21}\)\(=\frac{3^6.7.4}{3^7.7.3}\)\(=\frac{4}{3.3}=\frac{4}{9}\)
\(a,\left(x-1,2\right)^2=4\)
\(\Rightarrow x-1,2=2\)
\(\Rightarrow x=3,2\)
\(b,\left(x+1\right)^3=-125\)
\(\Rightarrow\left(x+1\right)^3=\left(-5\right)^3\)
\(\Rightarrow x+1=-5\Rightarrow x=-6\)
\(c,\left(x-5\right)^3=2^6\)
\(\Rightarrow\left(x-5\right)^3=4^3\)
\(\Rightarrow x-5=4\Rightarrow x=9\)
\(d,\left(2x+1\right)^{x+1}=5^{x+1}\)
\(\Rightarrow2x+1=5\Rightarrow x=2\)
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
\(\frac{4}{5}x+0=4,5\)
\(\frac{4}{5}x=4,5\)
\(x=4,5:\frac{4}{5}\)
\(x=5,625\)
vậy \(x=5,625\)
\(\frac{x}{3}=\frac{-5}{9}\)
\(\Rightarrow9x=-5.3\)
\(\Rightarrow9x=-15\)
\(\Rightarrow x=\frac{-5}{3}\)
vậy \(x=\frac{-5}{3}\)
\(\left|x+5\right|-\frac{1}{3}=\frac{2}{3}\)
\(\left|x+5\right|=\frac{2}{3}+\frac{1}{3}\)
\(\left|x+5\right|=1\)
\(\Rightarrow\orbr{\begin{cases}x+5=1\\x+5=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-4\\x=-6\end{cases}}\)
vậy \(\orbr{\begin{cases}x=-4\\x=-6\end{cases}}\)
\(\left(x-2\right)^3=-125\)
\(\left(x-2\right)^3=\left(-5\right)^3\)
\(\Rightarrow x-2=-5\)
\(\Rightarrow x=-3\)
vậy \(x=-3\)
mình làm lại câu b) nha
b) |x-3|=-4
th1: x-3=-4
x=3+(-4)
x=-1
th2: x-3=4
x=3+4
x=7
b) \(\left|x-3\right|=-4\)
t/h1:\(x-3=-4\)
\(x=3-\left(-4\right)\)
\(x=7\)
t/h2:\(x-3=4\)
\(x=3-4\)
\(x=-1\)