Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
\(\frac{x-3}{4}=\frac{y+5}{3}=\frac{z-4}{5}=\frac{2x-6}{8}=\frac{3y+15}{9}=\frac{4z-16}{20}\)
\(=\frac{2x+3y-4z-6+15+16}{-3}=-\frac{100}{3}\)
Làm nốt
2
\(\left|x-2\right|\ge0\) dấu "=" xảy ra tại x=2
\(\left(x-y\right)^2\ge0\) dấu "=" xảy ra tại x=y
\(3\sqrt{z^2+9}\ge3\sqrt{9}=9\) dấu "=" xảy ra tại z=0
\(\Rightarrow C\ge0+0+9+16=25\) dấu "=" xảy ra tại x=y=2;z=0
5
Chứng minh \(1< M< 2\) là OK
- \(y\left(-5\right)=\frac{-2.\left(-5\right)}{5}=2\Rightarrow N\in\left(d\right)\)
- \(y\left(0\right)=\frac{-2.0}{5}=0\ne3\Rightarrow M\notin\left(d\right)\)
- \(y\left(3\right)=\frac{-2.3}{5}=\frac{-6}{5}=-1\frac{1}{5}\Rightarrow P\in\left(d\right)\)
2.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-3}{4}=\frac{y+5}{3}=\frac{z-4}{5}=\frac{2x-3-3y-5+4z-4}{2.4-3.3+4.5}=\frac{2x-3y+4z-12}{19}=\frac{75-12}{19}=\frac{63}{19}\)
=> x,y,z=
1) Ta có : \(\sqrt{50}+\sqrt{26}+1>\sqrt{49}+\sqrt{25}+1=7+5+1=13=\sqrt{169}>\sqrt{168}\)
=> \(\sqrt{50}+\sqrt{26}+1>\sqrt{168}\)
6) Ta có : \(\hept{\begin{cases}\frac{a}{a+b}>\frac{a}{a+b+c}\\\frac{b}{b+c}>\frac{b}{a+b+c}\\\frac{c}{c+a}>\frac{c}{a+b+c}\end{cases}}\)
Khi đó M > \(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
=> M > 1
Lại có : \(\hept{\begin{cases}\frac{a}{a+b}< \frac{a+c}{a+b+c}\\\frac{b}{b+c}< \frac{b+a}{a+b+c}\\\frac{c}{c+a}< \frac{c+b}{a+b+c}\end{cases}}\)
Khi đó M < \(\frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
=> M < 2 (2)
Kết hợp (1) và (2) => 1 < M < 2
=> \(M\notinℤ\)(ĐPCM)
a, Với x = 1 thì y = \(\frac{-1}{2}\cdot1=\frac{-1}{2}\)
Ta được \(A\left[1;-\frac{1}{2}\right]\)thuộc đồ thị hàm số y = \(-\frac{1}{2}x\)
Đường thẳng OA là đồ thị hàm số y = -1/2x
b, Thay \(A\left[\frac{1}{2};\frac{1}{4}\right]\)vào đồ thị hàm số y = -1/2x ta có :
\(y=\left[-\frac{1}{2}\right]\cdot\frac{1}{2}=-\frac{1}{4}\ne\frac{1}{4}\)Đẳng thức sai
Thay \(B\left[\frac{1}{2};-\frac{1}{4}\right]\)vào đồ thị hàm số y = -1/2x ta có :
\(y=\left[-\frac{1}{2}\right]\cdot\frac{1}{2}=-\frac{1}{4}\)Đẳng thức đúng
Bỏ dấu bằng vào chỗ C = [4;-2] nhé
Thay \(C\left[-4;2\right]\)vào đô thị hàm số y = -1/2x ta có :
\(y=\left[-\frac{1}{2}\right]\cdot\left[-4\right]=2\)Đẳng thức đúng
Vậy : ....
a, Với x = 1 thì y = -3 . 1 = -3
Ta được \(A(1;-3)\)thuộc đồ thị hàm số y = -3x
Đường thẳng OA là đồ thị hàm số y = -3x
b, Thay M\((-2;6)\)vào đồ thị hàm số y = -3x ta có :
y = \((-3)\cdot(-2)=6\) Đẳng thức đúng
Thay N \(\left[\frac{1}{2};\frac{2}{3}\right]\)vào đồ thị hàm số y = -3x ta có :
y = \((-3)\cdot\frac{1}{2}=-\frac{3}{2}\ne\frac{2}{3}\) Đẳng thức sai
Vậy điểm M thuộc đồ thị hàm số của y = -3x
c,Thay tung độ của P là 5 , thế vào tìm hoành độ ta có :
\(5=(-3)x\)=> x = \(\frac{-5}{3}\)
Vậy hoành độ của điểm P là \(-\frac{5}{3}\)
Do đó tọa độ của điểm P nằm trên đồ thị là \(P\left[-\frac{5}{3};5\right]\)
Hay : Dựa vào đồ thị điểm P có tung độ của bằng 5 thì \(x_P=-\frac{5}{3}\)
Bạn tìm tọa độ điểm P nhé
\(\frac{4}{5}x+0=4,5\)
\(\frac{4}{5}x=4,5\)
\(x=4,5:\frac{4}{5}\)
\(x=5,625\)
vậy \(x=5,625\)
\(\frac{x}{3}=\frac{-5}{9}\)
\(\Rightarrow9x=-5.3\)
\(\Rightarrow9x=-15\)
\(\Rightarrow x=\frac{-5}{3}\)
vậy \(x=\frac{-5}{3}\)
\(\left|x+5\right|-\frac{1}{3}=\frac{2}{3}\)
\(\left|x+5\right|=\frac{2}{3}+\frac{1}{3}\)
\(\left|x+5\right|=1\)
\(\Rightarrow\orbr{\begin{cases}x+5=1\\x+5=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-4\\x=-6\end{cases}}\)
vậy \(\orbr{\begin{cases}x=-4\\x=-6\end{cases}}\)
\(\left(x-2\right)^3=-125\)
\(\left(x-2\right)^3=\left(-5\right)^3\)
\(\Rightarrow x-2=-5\)
\(\Rightarrow x=-3\)
vậy \(x=-3\)