\(\left(2x-1\right)^8=\left(2x-1\right)^{10}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2023

(2x - 1)⁸ = (2x - 1)¹⁰

(2x - 1)¹⁰ - (2x - 1)⁸ = 0

(2x - 1)⁸.[(2x - 1)² - 1] = 0

(2x - 1)⁸ = 0 hoặc (2x - 1)² - 1 = 0

*) (2x - 1)⁸ = 0

2x - 1 = 0

2x = 1

x = 1/2

*) (2x - 1)² - 1 = 0

(2x - 1)² = 1

2x - 1 = 1 hoặc 2x - 1 = -1

**) 2x - 1 = 1

2x = 2

x = 1

**) 2x - 1 = -1

2x = 0

x = 0

Vậy x = 0; x = 1/2; x = 1

31 tháng 8 2023

(2x - 1)8 = (2x - 1)10

=) (2x - 1)10 : (2x - 1)8 = 1

    (2x - 1)2 = 1 =) = 12

=) 2x - 1 = 1

    2x = 2

      x = 1.

30 tháng 9 2017

mk cgx mắc bài này

30 tháng 9 2017

a) \(\left(2x-1\right)^{10}=\left(1-2x\right)^5\)

\(\Rightarrow\left(2x-1\right)^2=1-2x\)

\(\Rightarrow4x^2-4x+1=1-2x\)

\(\Rightarrow4x^2-4x=-2x\)

\(\Rightarrow2x^2-2x=-x\)

\(\Rightarrow2x^2-x=0\)

\(\Rightarrow x.\left(2x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy ...

b) \(\left(3x-1\right)^{15}=\left(1-3x\right)^8\)

\(\Rightarrow\left(3x-1\right)^{15}-\left(1-3x\right)^8=0\)

\(\Rightarrow\left(3x-1\right)^{15}-\left(-\left(3x-1\right)\right)^8=0\)

\(\Rightarrow\left(3x-1\right)^{15}-\left(3x-1\right)^8=0\)

\(\Rightarrow\left(3x-1\right)^8.\left(\left(3x-1\right)^7-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(3x-1\right)^8=0\\\left(3x-1\right)^7-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)

Vậy ....

c) Tự lm

11 tháng 6 2018

Làm tiếp nè :

2) / 2x + 4/ = 2x - 5

Do : / 2x + 4 / ≥ 0 ∀x

⇒ 2x - 5 ≥ 0

⇔ x ≥ \(\dfrac{5}{2}\)

Bình phương hai vế của phương trình , ta có :

( 2x + 4)2 = ( 2x - 5)2

⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0

⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0

⇔ 9( 4x - 1) = 0

⇔ x = \(\dfrac{1}{4}\) ( KTM)

Vậy , phương trình vô nghiệm .

3) / x + 3/ = 3x - 1

Do : / x + 3 / ≥ 0 ∀x

⇒ 3x - 1 ≥ 0

⇔ x ≥ \(\dfrac{1}{3}\)

Bình phương hai vế của phương trình , ta có :

( x + 3)2 = ( 3x - 1)2

⇔ ( x + 3)2 - ( 3x - 1)2 = 0

⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0

⇔ ( 4 - 2x)( 4x + 2) = 0

⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)

KL......

4) / x - 4/ + 3x = 5

⇔ / x - 4/ = 5 - 3x

Do : / x - 4/ ≥ 0 ∀x

⇒ 5 - 3x ≥ 0

⇔ x ≤ \(\dfrac{-5}{3}\)

Bình phương cả hai vế của phương trình , ta có :

( x - 4)2 = ( 5 - 3x)2

⇔ ( x - 4)2 - ( 5 - 3x)2 = 0

⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0

⇔ ( 4x - 9)( 1 - 2x) = 0

⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)

KL......


Làm tương tự với các phần khác nha

11 tháng 6 2018

1)\(\left|4x\right|=3x+12\)

\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)

\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)

\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)

Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)

7 tháng 7 2019

\(a,\left(x+1\right)^2=81\) 

    \(\left(x+1\right)^2=9^2\)  Hoặc \(\left(x+1\right)^2=\left(-9\right)^2\)

      \(\left(x+1\right)=9\)                     \(x+1=-9\)

                     \(x=8\)                               \(x=-10\)

b,\(\left(x+5\right)^{^{ }3}=-64\)

  \(\left(x+5\right)^3=\left(-4\right)^3\)

          \(x+5=-4\)

=>               \(x=-9\)

c,\(\left(2x-3\right)^2=9\)

=>\(\left(2x-3\right)^2=3^2\)Hoặc  \(\left(2x-3\right)^2=\left(-3\right)^2\)

            \(2x-3=3\)                    \(2x-3=-3\)

                     \(2x=6\)                             \(2x=0\)       

=> \(\hept{\begin{cases}x=3\\x=0\end{cases}}\)

d, \(\left(4x+1\right)^3=27\)

   \(\left(4x+1\right)^{^{ }3}=3^3\)

            \(4x+1=3\)

                     \(4x=2\)

                       \(x=\frac{1}{2}\)

\(D=\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{8^6}{4}=\frac{\left(2^3\right)^6}{2^2}=\frac{2^{18}}{2^2}=2^{16}\)

7 tháng 7 2019

\(D=\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{4^{15}+4^{10}}{4^6+4^{11}}=\frac{4^{10}.4^5+4^{10}}{4^6+4^6.4^5}=\frac{4^{10}.\left(4^5+1\right)}{4^6.\left(4^5+1\right)}=\frac{4^{10}}{4^6}=4^4=256\)

phần D trên mk làm sai xin lỗi nha

20 tháng 7 2016

a/ (x - 1)6 = (x - 1)8

=> (x - 1)6 [1 - (x - 1)2] = 0

=> (x - 1)6 (1 - x2 + 2x - 1) = 0

=> (x - 1)6 (-x2 + 2x) = 0

=> x - 1 = 0 => x = 1

hoặc - x2 + 2x = 0 => x = 0 hoặc x = 2

                               Vậy x = 0, x = 1, x = 2

22 tháng 12 2019

Ta có: |2x - 1| = |1 - 2x|

Lại có: \(\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=\left|4\right|=4\)

Mà \(\left|2x+3\right|+\left|1-2x\right|=\frac{8}{3\left(x+1\right)^2+2}\)

\(\Rightarrow\frac{8}{3\left(x+1\right)^2+2}=4\)\(\Rightarrow3\left(x+1\right)^2+2=8\div4\)\(\Rightarrow3\left(x+1\right)^2+2=2\)\(\Rightarrow3\left(x+1\right)^2=2-2=0\)\(\Rightarrow\left(x+1\right)^2=0\)\(\Rightarrow x+1=0\)\(\Rightarrow x=-1\)

1 tháng 1 2020

Sửa bài:

\(\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=4\) với mọi x

\(\frac{8}{3\left(x+1\right)^2+2}\le\frac{8}{3.0+2}=4\)với mọi x

=> \(\left|2x+3\right|+\left|2x-1\right|\ge\frac{8}{3\left(x+1\right)^2+2}\)với mọi x

=> \(\left|2x+3\right|+\left|2x-1\right|=\frac{8}{3\left(x+1\right)^2+2}\)

<=> \(\hept{\begin{cases}\left(2x+3\right)\left(1-2x\right)\ge0\\\left(x+1\right)^2=0\end{cases}\Leftrightarrow}x=-1\)

Vậy S = { -1 }

31 tháng 7 2018

a. \(\left(\frac{-1}{3}\right)^3.x=\frac{1}{81}\)

\(\Leftrightarrow\frac{1}{81}:\left(-\frac{1}{27}\right)\)

\(\Leftrightarrow x=\frac{-1}{3}\)

b. x8 = 16 . x6

  <=>  x8 : x6 = 16

 <=> x2          = 42

<=> x            = 4

c. (2x - 1)6 = (2x - 1)8

    <=> x = \(\orbr{\begin{cases}x=1\\x=0\end{cases}}\)

Vậy x = 1 hoặc 0

\(VT=\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=\left|4\right|=4\)

\(VP=\frac{8}{3\left(x+1\right)^2+2}\le\frac{8}{2}=4\)

\(VT\ge VP\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(2x+3\right)\left(1-2x\right)\ge0\left(1\right)\\\left(x+1\right)^2=0\left(2\right)\end{cases}}\)

\(\left(2\right)\)\(\Leftrightarrow\)\(x=-1\) ( thỏa mãn\(\left(1\right)\) ) 

... 

11 tháng 7 2017

a)\(\left|2x\right|>5\Leftrightarrow\) \(\orbr{\begin{cases}2x>5\\2x< -5\end{cases}\Leftrightarrow\orbr{\begin{cases}x>\frac{5}{2}\\x< -\frac{5}{2}\end{cases}}}\)

b)\(\left|x-2\right|>10\Leftrightarrow\orbr{\begin{cases}x-2>10\\x-2< -10\end{cases}\Leftrightarrow\orbr{\begin{cases}x>12\\x< -8\end{cases}}}\)

c)\(\left|2x-1\right|>x-1\Leftrightarrow\orbr{\begin{cases}2x-1>x-1\\2x-1< -\left(x-1\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}2x-x>1-1\\2x+x< 1+1\end{cases}}}\)\(\Leftrightarrow\orbr{\begin{cases}x>0\\3x< 2\end{cases}\Leftrightarrow\orbr{\begin{cases}x>0\\x< \frac{2}{3}\end{cases}}}\)