Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
Lời giải:
a.
$x=\frac{-5}{6}-\frac{2}{3}=\frac{-3}{2}$
b.
$\frac{2}{3}x=\frac{1}{10}-\frac{1}{2}=\frac{-2}{5}$
$x=\frac{-2}{5}: \frac{2}{3}=\frac{-3}{5}$
c.
$\frac{7}{8}x=\frac{2}{9}-\frac{1}{3}=\frac{-1}{9}$
$x=\frac{-1}{9}: \frac{7}{8}=\frac{-8}{63}$
d.
$\frac{5}{7}: x=\frac{1}{6}-\frac{4}{5}=\frac{-19}{30}$
$x=\frac{5}{7}: \frac{-19}{30}=\frac{-150}{133}$
e.
$(\frac{2}{5}-1\frac{2}{3}):x=\frac{2}{5}+\frac{3}{5}=1$
$\frac{-19}{15}: x=1$
$x=\frac{-19}{15}:1 =\frac{-19}{15}$
f.
$(-\frac{3}{4}+x).2\frac{2}{3}=1$
$\frac{-3}{4}+x=1: 2\frac{2}{3}=\frac{3}{8}$
$x=\frac{3}{8}+\frac{3}{4}=\frac{9}{8}$
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
a) \(5+3^{x+1}=86\)
\(=>3^{x+1}=86-5\)
\(=>3^{x+1}=81=3^4\)
\(=>x+1=4\) ( cùng cơ số )
\(=>x=4-1\)
\(=>x=3\)
b) \(15:\left(x+2\right)=\left(3^3+3\right):10\)
\(=>15:\left(x+2\right)=\left(27+3\right):10\)
\(=>15:\left(x+2\right)=30:10=3\)
\(=>x+2=15:3\)
\(=>x+2=5\)
\(=>x=5-2\)
\(=>x=3\)
c) \(\left(9x+2\right).4=80\)
\(=>9x+2=80:4\)
\(=>9x+2=20\)
\(=>9x=20-2\)
\(=>9x=18\)
\(=>x=18:9\)
\(=>x=2\)
d) \(\left(245-x\right)+7^2=14\)
\(=>\left(245-x\right)+14=14\)
\(=>245-x=14-14\)
\(=>245-x=0\)
\(=>x=245-0\)
\(=>x=245\)
Câu 1:
a) Ta có: x-3 là ước của 13
\(\Leftrightarrow x-3\inƯ\left(13\right)\)
\(\Leftrightarrow x-3\in\left\{1;-1;13;-13\right\}\)
hay \(x\in\left\{4;2;16;-10\right\}\)(thỏa mãn)
Vậy: \(x\in\left\{4;2;16;-10\right\}\)
b) Ta có: \(x^2-7\) là ước của \(x^2+2\)
\(\Leftrightarrow x^2+2⋮x^2-7\)
\(\Leftrightarrow x^2-7+9⋮x^2-7\)
mà \(x^2-7⋮x^2-7\)
nên \(9⋮x^2-7\)
\(\Leftrightarrow x^2-7\inƯ\left(9\right)\)
\(\Leftrightarrow x^2-7\in\left\{1;-1;3;-3;9;-9\right\}\)
mà \(x^2-7\ge-7\forall x\)
nên \(x^2-7\in\left\{1;-1;3;-3;9\right\}\)
\(\Leftrightarrow x^2\in\left\{8;6;10;4;16\right\}\)
\(\Leftrightarrow x\in\left\{2\sqrt{2};-2\sqrt{2};-\sqrt{6};\sqrt{6};\sqrt{10};-\sqrt{10};2;-2;4;-4\right\}\)
mà \(x\in Z\)
nên \(x\in\left\{2;-2;4;-4\right\}\)
Vậy: \(x\in\left\{2;-2;4;-4\right\}\)
Câu 2:
a) Ta có: \(2\left(x-3\right)-3\left(x-5\right)=4\left(3-x\right)-18\)
\(\Leftrightarrow2x-6-3x+15=12-4x-18\)
\(\Leftrightarrow-x+9+4x+6=0\)
\(\Leftrightarrow3x+15=0\)
\(\Leftrightarrow3x=-15\)
hay x=-5
Vậy: x=-5
\(1.\) \(-12\left(x-5\right)+7\left(3-x\right)=5\)
\(=>-12x+60+21-7x=5\)
\(=>-12x+81-7x=5\)
\(=>-12x-7x+81=5\)
\(=>-19x+81=5\)
\(=>-19x=-76\)
\(=>x=4\)
\(2.\) \(\left(x-2\right).\left(x+15\right)=0\)
\(=>\left[\begin{matrix}x-2=0\\x+15=0\end{matrix}\right.=>\left[\begin{matrix}x=2\\x=-15\end{matrix}\right.\)
\(3.\) \(\left(7-x\right).\left(x+19\right)=0\)
\(=>\left[\begin{matrix}7-x=0\\x+19=0\end{matrix}\right.=>\left[\begin{matrix}x=7\\x=-19\end{matrix}\right.\)
\(4.\) \(\left|x\right|< 3\)
Xét: x là số dương => x < 3
Xét: x là số âm => x < -3
1: =>-12x+60+21-7x=5
=>-19x=-76
hay x=4
2: =>x-2=0 hoặc x+15=0
=>x=2 hoặc x=-15
3: =>7-x=0 hoặc x+19=0
=>x=7 hoặc x=-19
1: =>-12x+60+21-7x=5
=>-19x=-76
hay x=4
2: =>x-2=0 hoặc x+15=0
=>x=2 hoặc x=-15
3: =>7-x=0 hoặc x+19=0
=>x=7 hoặc x=-19
Bài giải
a) (2.x - 1).(x - 3) = 0 (x thuộc N)
Mà 0.0 = 0 hoặc 0 nhân với số nào cũng bằng 0
Suy ra một trong hai biểu thức "(2.x - 1)" hoặc "x - 3" = 0
Ta có:
Vậy x = 3
Mấy câu còn lại để mai mình làm
a) Ta có:
(2x - 1)(x - 3) = 0
=> \(\orbr{\begin{cases}2x-1=0\\x-3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\left(ktm\right)\\x=3\left(tm\right)\end{cases}}\)
b) 3x(x - 2) = x - 2
=> 3x(x - 2) - (x - 2) = 0
=> (3x - 1)(x - 2) = 0
=> \(\orbr{\begin{cases}3x-1=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{3}\left(tkm\right)\\x=2\left(tm\right)\end{cases}}\)
c) (2x + 3)x - 2(2x + 3) = 0
=> (2x + 3)(x - 2) = 0
=> \(\orbr{\begin{cases}2x+3=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{3}{2}\left(ktm\right)\\x=2\left(tm\right)\end{cases}}\)
d) 4(x - 3) + 2x(x - 3) = 0
=> (4 + 2x)(x - 3) = 0
=> \(\orbr{\begin{cases}4+2x=0\\x-3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-2\left(tkm\right)\\x=3\left(tm\right)\end{cases}}\)